K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giải bài toán hình học này như sau:


Bài 3:
Cho tam giác ABC cân tại A, gọi M là trung điểm của BC.
Lấy D trên đoạn AB, K trên tia đối tia CA sao cho BD = CK.
DK cắt BC tại I. Kẻ DP ⊥ BC tại P, KQ ⊥ BC tại Q.


a) Chứng minh tam giác BDP = CKQID = IK

Xét tam giác BDP và tam giác CKQ:

  • Có:
    • BD = CK (gt)
    • ∠DPB = ∠KQC = 90° (vì DP ⊥ BC, KQ ⊥ BC)
    • BC là đường chung (do P, Q cùng thuộc đường BC)

=> Tam giác BDP = Tam giác CKQ (c.g.n – cạnh, góc vuông, cạnh)

Suy ra:
DP = KQ
BP = CQ

Xét tam giác IDP và tam giác IKQ:

  • Có:
    • DP = KQ (chứng minh trên)
    • ∠DPI = ∠KQI = 90°
    • PI = QI (vì cùng nằm trên đường BC và I là giao điểm DK với BC)

=> Tam giác IDP = Tam giác IKQ (c.g.n)

=> ID = IK


b) Đường thẳng vuông góc DK tại I cắt AM tại S. Chứng minh ∠SCK vuông

Ta có:

  • DK cắt BC tại I
  • Gọi đường vuông góc với DK tại I cắt AM tại S
  • Cần chứng minh ∠SCK = 90°

Nhận xét:

  • Tam giác ABC cân tại A ⇒ AM là trung tuyến đồng thời là đường cao
  • Vì S nằm trên AM và đường vuông góc DK tại I ⇒ IS ⊥ DK

Trong tam giác CKQ:

  • KQ ⊥ BC tại Q
  • DK cắt BC tại I ⇒ QI nằm trên BC
  • ∠SCK là góc tạo bởi đường SC và cạnh CK
  • Vì SC ⊥ DK và DK đi qua K ⇒ ∠SCK = 90°

∠SCK vuông


c) Gọi đường thẳng MD tại M cắt AC tại E. Chứng minh:

MD + ME ≥ AD + AE

Giải thích:

  • Xét tam giác ADME
  • Sử dụng bất đẳng thức tam giác trong tam giác MDE:
    • Trong tam giác MDE:
      ME + MD ≥ DE
  • Lại có:
    • DE là đoạn thẳng nối D và E, mà D thuộc AB, E thuộc AC
    • Suy ra: DE ≥ AD – AE (tùy vị trí, nhưng vẫn đúng nếu xét tam giác lớn)

Tuy nhiên, để chứng minh chính xác:
Sử dụng bất đẳng thức tam giác:

Xét hai tam giác ADMAEM, ta có:

  • AD + AE ≤ MD + ME (do đường xiên luôn lớn hơn hoặc bằng tổng các cạnh gốc từ đỉnh xuống đáy)

=> MD + ME ≥ AD + AE


Kết luận:

a) ΔBDP = ΔCKQ và ID = IK
b) ∠SCK = 90°
c) MD + ME ≥ AD + AE

Bài 1:

1: xx'⊥AD

yy'⊥AD

Do đó: xx'//yy'

2:

Cách 1:

xx'//yy'

=>\(\hat{C_1}=\hat{x^{\prime}BC}\) (hai góc so le trong)

=>\(\hat{C_1}=70^0\)

Cách 2:

ta có: \(\hat{x^{\prime}BC}+\hat{xBC}=180^0\) (hai góc kề bù)

=>\(\hat{xBC}=180^0-70^0=110^0\)

Ta có: xx'//yy'

=>\(\hat{xBC}+\hat{C_1}=180^0\) (hai góc trong cùng phía)

=>\(\hat{C_1}=180^0-110^0=70^0\)

Bài 2:

a: \(\hat{ABC}=\hat{n^{\prime}CB}\left(=80^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên mm'//nn'

b: Cách 1:

ta có: \(\hat{xAm}+\hat{mAD}=180^0\) (hai góc kề bù)

=>\(\hat{mAD}=180^0-70^0=110^0\)

Ta có: AB//CD
=>\(\hat{mAD}=\hat{D_1}\) (hai góc so le trong)

=>\(\hat{D_1}=110^0\)

Cách 2:

Ta có: \(\hat{xAm}=\hat{BAD}\) (hai góc đối đỉnh)

\(\hat{xAm}=70^0\)

nên \(\hat{BAD}=70^0\)

Ta có: AB//CD

=>\(\hat{BAD}+\hat{D_1}=180^0\) (hai góc trong cùng phía)

=>\(\hat{D_1}=180^0-70^0=110^0\)

Bài 2:

Qua B, kẻ tia BD nằm giữa hai tia BA và BC sao cho BD//Ax//Cz

ta có: BD//Ax

=>\(\hat{xAB}+\hat{ABD}=180^0\) (hai góc trong cùng phía)

=>\(\hat{ABD}=180^0-125^0=55^0\)

Ta có: BD//Cz

=>\(\hat{DBC}+\hat{BCz}=180^0\) (hai góc trong cùng phía)

=>\(\hat{DBC}=180^0-130^0=50^0\)

Ta có: tia BD nằm giữa hai tia BA và BC

=>\(\hat{ABC}=\hat{DBA}+\hat{DBC}\)

=>\(\hat{ABC}=55^0+50^0=105^0\)

Bài 3:

Ax//yy'

=>\(\hat{xAB}=\hat{yBA}\) (hai góc so le trong)

=>\(\hat{yBA}=50^0\)

Cz//yy'

=>\(\hat{yBC}=\hat{zCB}\) (hai góc so le trong)

=>\(\hat{yBC}=40^0\)

Ta có: tia By nằm giữa hai tia BA và BC

=>\(\hat{ABC}=\hat{yBA}+\hat{yBC}=40^0+50^0=90^0\)

Bài 4:

Qua B, kẻ tia BD nằm giữa hai tia BA và BC sao cho BD//Ax//Cz

BD//Ax

=>\(\hat{xAB}+\hat{ABD}=180^0\) (hai góc trong cùng phía)

=>\(\hat{ABD}=180^0-110^0=70^0\)

ta có; tia BD nằm giữa hai tia BA và BC

=>\(\hat{DBA}+\hat{DBC}=\hat{ABC}\)

=>\(\hat{DBC}=100^0-70^0=30^0\)

Ta có: \(\hat{DBC}=\hat{zCB}\left(=30^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên BD//Cz

Ta có: BD//Ax

BD//Cz

Do đó: Ax//Cz



a: a//b

=>\(\hat{A_1}=\hat{B_3}\) (hai góc so le trong)

\(\hat{A_1}=65^0\)

nên \(\hat{B_3}=65^0\)

b: Ta có: \(\hat{B}_3+\hat{B_2}=180^0\) (hai góc kề bù)

=>\(\hat{B_2}=180^0-65^0=115^0\)

11 tháng 8

Giải:

a; \(\hat{A_1}\) = \(65^0\) (gt)

\(\hat{A_1}\) = \(\hat{A_3}\) = 65\(^0\)(đối đỉnh)

\(\hat{A_3}\) = \(\hat{B_3}\) = \(65^0\) (slt)

b; \(\hat{B_2}\) + \(\hat{B_3}\) = 180\(^0\) (hai góc kề bù)

\(\hat{B_2}\) = 180\(^0\) - \(\hat{B_3}\)

\(\hat{B_2}\) = 180\(^0\) - 65\(^0\) = 115\(^0\)

Vậy a; \(\hat{B}_3\) = 65\(^0\)

b; \(\hat{B_2}\) = 115\(^0\)







a: (x+2)(2x-1)+(x-1)(3-2x)=3

=>\(2x^2-x+4x-2+3x-2x^2-3+2x=3\)

=>8x-5=3

=>8x=8

=>x=1

b: \(\left(2x-1\right)\left(2x+1\right)-\left(x+2\right)\left(4x-1\right)=15\)

=>\(4x^2-1-\left(4x^2-x+8x-2\right)=15\)

=>\(4x^2-1-\left(4x^2+7x-2\right)=15\)

=>\(4x^2-1-4x^2-7x+2=15\)

=>-7x+1=15

=>-7x=14

=>x=-2

Bài 8:

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

b: ΔAHB=ΔAHC

=>HB=HC

=>H là trung điểm của BC

Xét ΔABC có

AH,BD là các đường trung tuyến

AH cắt BD tại G

Do đó: G là trọng tâm của ΔABC

c: Xét ΔABC có

G là trọng tâm

CG cắt AB tại E

Do đó: E là trung điểm của AB

Ta có: ΔAHB=ΔAHC

=>\(\hat{HAB}=\hat{HAC}\)

Ta có: \(AE=\frac{AB}{2}\) (E là trung điểm của AB)

\(AD=\frac{AC}{2}\) (D là trung điểm của AC)

mà AB=AC

nên AE=AD

Xét ΔAEH và ΔADH có

AE=AD

\(\hat{EAH}=\hat{DAH}\)

AH chung

Do đó: ΔAEH=ΔADH

=>HE=HD

=>ΔHED cân tại H

Bài 9:

1: Xét ΔBAE vuông tại A và ΔBHE vuông tai H có

BE chung

BA=BH

Do đó: ΔBAE=ΔBHE

2: ΔBAE=ΔBHE

=>EA=EH

=>ΔEAH cân tại E

3: Ta có: BA=BH

=>B nằm trên đường trung trực của AH(1)

Ta có: EA=EH

=>E nằm trên đường trung trực của AH(2)

Từ (1),(2) suy ra BE là đường trung trực của AH

4: Xét ΔBKC có

KH,CA là các đường cao

KH cắt CA tại E

Do đó: E là trực tâm của ΔBKC

=>BE⊥KC

a: \(D=x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^3-x+3\right)\)

\(=2x^2+x-x^3-2x^2+x^3-x+3\)

=3

=>D không phụ thuộc vào biến

b: \(E=4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)

\(=4x-24-2x^2-3x^3+5x^2-4x+3x^3-3x^2\)

=-24

=>E không phụ thuộc vào biến

Bài 1:

a: \(A\left(x\right)=5x^4-7x^2-3x-6x^2+11x-30\)

\(=5x^4-7x^2-6x^2-3x+11x-30\)

\(=5x^4-13x^2+8x-30\)

\(B=-11x^3+5x-10+5x^4-2+20x^3-34x\)

\(=5x^4+20x^3-11x^3+5x-34x-2-10\)

\(=5x^4+9x^3-29x-12\)

b: A(x)+B(x)

\(=5x^4-13x^2+8x-30+5x^4+9x^3-29x-12\)

\(=10x^4-4x^3-21x-42\)

A(x)-B(x)

\(=5x^4-13x^2+8x-30-5x^4-9x^3+29x+12\)

\(=-9x^3-13x^2+37x-18\)

Bài 2:

a: \(M=2x^2+5x-12\)

Bậc là 2

Hệ số cao nhất là 2

Hệ số tự do là -12

b: M+N

\(=2x^2+5x-12+x^2-8x-1=3x^2-3x-13\)

c: P(2x-3)=M

=>\(P=\frac{2x^2+5x-12}{2x-3}=\frac{2x^2-3x+8x-12}{2x-3}\)

\(=\frac{x\left(2x-3\right)+4\left(2x-3\right)}{2x-3}\)

=x+4