
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



=> x3 - x2 - 6x2 + 6x + 6x - 6 = 0
=> x2(x - 1) - 6x(x - 1) + 6(x - 1) = 0
=> (x - 1)(x2 - 6x + 6) = 0
=> x - 1 = 0 hoặc x2 - 6x + 6 = 0
=> x = 1 hoặc x2 - 6x + 6 = 0
Ta có: x2 - 6x + 6 = x2 - 2.x.3 + 9 - 9 + 6
= (x -3)2 - 3 lớn hơn hoặc bằng - 3
=> x2 - 6x + 6 >0
=> x= 1. Vậy x = 1

\(\left(a+1\right)^3\)
\(=a^3+3a^2.1+3.a.1^2+1^3\)
\(=a^3+3a^2+3a+1\)
\(\left(4x+2y\right)^3\)
\(=\left(4x\right)^3+3.\left(4x\right)^2.2y+3.4x.\left(2y\right)^2+\left(2y\right)^3\)
\(=\)
Bạn tự tính nha

\(\left(a+b-c\right)^2-\left(a-c\right)^2-2ab+2bc\)
\(=a^2+b^2+c^2+2ab-2ac-2bc-a^2+2ac-c^2-2ab+2bc\)
\(=b^2\)

Sửa đề: E,M,D lần lượt là trung điểm của BA,BC,AC.
a: Xét ΔABC có
E,D lần lượt là trung điểm của AB,AC
=>ED là đường trung bình của ΔABC
=>ED//BC và \(ED=\frac{BC}{2}\)
ED//BC
=>ED//CM
ta có: \(ED=\frac{BC}{2}\)
\(CM=\frac{CB}{2}\)
Do đó: ED=CM
Xét tứ giác EDCM có
ED//CM
ED=CM
Do đó: EDCM là hình bình hành
b: Sửa đề: Kẻ AK⊥BC tại K
Ta có: ED//BC
=>ED//KM
EDCM là hình bình hành
=>EM=CD(1)
Ta có: ΔAKC vuông tại K
mà KD là đường trung tuyến
nên DK=DC(2)
Từ (1),(2) suy ra EM=KD
Xét tứ giác EDMK có
ED//MK
EM=DK
Do đó: EDMK là hình thang cân
Giả sử đề bài là:
Cho tam giác \(A B C\) với \(A B > A C\). Lấy \(E , M , D\) lần lượt là trung điểm của \(A B , B C , C A\).
a) Chứng minh tứ giác \(E D C M\) là hình bình hành.
b) Kẻ điểm \(K\) trên đoạn \(B C\) sao cho \(K\) vuông góc với \(B C\) (câu này hơi khó hiểu, có thể ý bạn là kẻ đường thẳng \(K\) vuông góc với \(B C\) tại điểm \(K\) thuộc đoạn \(B C\)), chứng minh tứ giác \(E D M K\) là hình thang cân.
Nếu đúng như trên, mình sẽ giải theo giả thiết này nhé.
Phần a) Chứng minh tứ giác \(E D C M\) là hình bình hành
Bước 1: Xác định các điểm
- \(E\) là trung điểm \(A B\)
- \(M\) là trung điểm \(B C\)
- \(D\) là trung điểm \(C A\)
- \(C\) là đỉnh tam giác
Bước 2: Phân tích tứ giác \(E D C M\)
Tứ giác có các đỉnh: \(E , D , C , M\).
Ta cần chứng minh \(E D C M\) là hình bình hành, tức hai cặp cạnh đối song song và bằng nhau:
- \(E D \parallel C M\) và \(E D = C M\)
- \(D C \parallel E M\) và \(D C = E M\)
Bước 3: Sử dụng vectơ
Gọi vectơ \(\overset{⃗}{A B} = \overset{⃗}{b}\), \(\overset{⃗}{A C} = \overset{⃗}{c}\), điểm \(A\) là gốc tọa độ.
- \(E\) trung điểm \(A B \Rightarrow \overset{⃗}{E} = \frac{\overset{⃗}{A} + \overset{⃗}{B}}{2} = \frac{\overset{⃗}{0} + \overset{⃗}{b}}{2} = \frac{\overset{⃗}{b}}{2}\)
- \(M\) trung điểm \(B C \Rightarrow \overset{⃗}{M} = \frac{\overset{⃗}{B} + \overset{⃗}{C}}{2} = \frac{\overset{⃗}{b} + \overset{⃗}{c}}{2}\)
- \(D\) trung điểm \(C A \Rightarrow \overset{⃗}{D} = \frac{\overset{⃗}{C} + \overset{⃗}{A}}{2} = \frac{\overset{⃗}{c} + \overset{⃗}{0}}{2} = \frac{\overset{⃗}{c}}{2}\)
- \(C = \overset{⃗}{c}\)
Bây giờ tính các vectơ cạnh của tứ giác \(E D C M\):
- \(\overset{⃗}{E D} = \overset{⃗}{D} - \overset{⃗}{E} = \frac{\overset{⃗}{c}}{2} - \frac{\overset{⃗}{b}}{2} = \frac{\overset{⃗}{c} - \overset{⃗}{b}}{2}\)
- \(\overset{⃗}{C M} = \overset{⃗}{M} - \overset{⃗}{C} = \frac{\overset{⃗}{b} + \overset{⃗}{c}}{2} - \overset{⃗}{c} = \frac{\overset{⃗}{b} + \overset{⃗}{c} - 2 \overset{⃗}{c}}{2} = \frac{\overset{⃗}{b} - \overset{⃗}{c}}{2} = - \overset{⃗}{E D}\)
Do đó,
\(\overset{⃗}{E D} = - \overset{⃗}{C M} \Rightarrow E D \parallel C M \&\text{nbsp};\text{v} \overset{ˋ}{\text{a}} \&\text{nbsp}; E D = C M\)
- \(\overset{⃗}{D C} = \overset{⃗}{C} - \overset{⃗}{D} = \overset{⃗}{c} - \frac{\overset{⃗}{c}}{2} = \frac{\overset{⃗}{c}}{2}\)
- \(\overset{⃗}{E M} = \overset{⃗}{M} - \overset{⃗}{E} = \frac{\overset{⃗}{b} + \overset{⃗}{c}}{2} - \frac{\overset{⃗}{b}}{2} = \frac{\overset{⃗}{c}}{2}\)
Do đó,
\(\overset{⃗}{D C} = \overset{⃗}{E M} \Rightarrow D C \parallel E M \&\text{nbsp};\text{v} \overset{ˋ}{\text{a}} \&\text{nbsp}; D C = E M\)
Kết luận:
Hai cặp cạnh đối song song và bằng nhau nên tứ giác \(E D C M\) là hình bình hành.
Phần b) Chứng minh \(E D M K\) là hình thang cân
Bạn nói: "Kẻ \(K\) vuông góc với \(B C\), \(K\) thuộc \(B C\)", ý mình đoán là bạn kẻ điểm \(K\) trên đoạn \(B C\) sao cho đường thẳng \(A K\) vuông góc với \(B C\).
Bước 1: Đặt \(K\) là chân đường vuông góc từ \(A\) xuống \(B C\)
- \(K\) là điểm thuộc \(B C\) sao cho \(A K \bot B C\).
Bước 2: Tứ giác \(E D M K\) gồm các điểm:
- \(E\) trung điểm \(A B\)
- \(D\) trung điểm \(C A\)
- \(M\) trung điểm \(B C\)
- \(K\) chân vuông góc từ \(A\) xuống \(B C\)
Bước 3: Chứng minh \(E D M K\) là hình thang cân
- Để chứng minh tứ giác \(E D M K\) là hình thang cân, ta cần chứng minh:
- Có một cặp cạnh đối song song (thang)
- Hai cạnh bên bằng nhau (cân)
Bước 4: Phân tích
- \(M\) và \(K\) đều nằm trên \(B C\), nên \(M K \parallel E D\) (điều này cần chứng minh)
- Sử dụng vectơ:
Tính vectơ \(\overset{⃗}{M K}\) và \(\overset{⃗}{E D}\):
- \(\overset{⃗}{E D} = \frac{\overset{⃗}{c} - \overset{⃗}{b}}{2}\) (như trên)
- \(M\) trung điểm \(B C \Rightarrow \overset{⃗}{M} = \frac{\overset{⃗}{b} + \overset{⃗}{c}}{2}\)
- \(K\) thuộc \(B C\), có thể biểu diễn: \(\overset{⃗}{K} = \overset{⃗}{b} + t \left(\right. \overset{⃗}{c} - \overset{⃗}{b} \left.\right)\), với \(0 \leq t \leq 1\)
- Vectơ \(\overset{⃗}{M K} = \overset{⃗}{K} - \overset{⃗}{M} = \overset{⃗}{b} + t \left(\right. \overset{⃗}{c} - \overset{⃗}{b} \left.\right) - \frac{\overset{⃗}{b} + \overset{⃗}{c}}{2} = \left(\right. t - \frac{1}{2} \left.\right) \left(\right. \overset{⃗}{c} - \overset{⃗}{b} \left.\right)\)
Do đó, \(\overset{⃗}{M K}\) song song với \(\overset{⃗}{E D}\), nên \(E D \parallel M K\).
Bước 5: Chứng minh \(E D M K\) là hình thang cân
- Cặp cạnh \(E D\) và \(M K\) song song → \(E D M K\) là hình thang.
- Ta cần chứng minh \(E M = D K\) (hoặc \(E D = M K\)) để thang cân.
Bạn có thể tính độ dài \(E M\) và \(D K\) hoặc \(E D\) và \(M K\) chứng minh bằng vectơ.

a, Vì ΔDEF vuông tại D⇒ \(\widehat{FDE}=90^0\)
hay \(\widehat{ADB}=90^0\)
Vì DK là đường cao của ΔDEF
⇒ DK ⊥ EF
⇒ \(\widehat{DKE}=\widehat{DKF}=90^0\)
Vì KA ⊥ DE ⇒ \(\widehat{DAK}=\widehat{A_1}=90^0\)
Vì KB ⊥ DF ⇒ \(\widehat{DBK}=\widehat{B_1}=90^0\)
Tứ giác ADBK có\(\left\{{}\begin{matrix}\widehat{ADB}=90^0\\\widehat{DAK}=90^0\\\widehat{DBK}=90^0\end{matrix}\right.\)
⇒ Tứ giác ADBK là hình chữ nhật
⇒ AB = DK (hai đường chéo trong hình chữ nhật)(đpcm)
b, Vì C đối xứng với D qua I
⇒ I là trung điểm của CD
Tứ giác DFCK có
\(\left\{{}\begin{matrix}\text{I là trung điểm của FK}\\\text{I là trung điểm của CD}\\\text{Đường chéo FK và CD}\end{matrix}\right.\)
⇒ Tứ giác DFCK là hình bình hành
⇒ DF // CK (đpcm)
c,
Vì tứ giác ADBK là hình chữ nhật
⇒ AK // BD
⇒ AK // DF
Ta có \(\left\{{}\begin{matrix}\text{DF // CK }\\\text{AK // DF}\end{matrix}\right.\)
⇒ A, K, C thẳng hàng (tiên đề Ơclit)
Vì DF // CK
⇒ BF // AC
⇒ Tứ giác BFAC là hình thang (1)
Kẻ thêm: Từ F kẻ FN ⊥ AC
⇒ \(\widehat{CNF}=\widehat{KNF}=90^0\)
Vì tứ giác ADBK là hình chữ nhật
⇒ \(\widehat{AKB}=90^0\)
Vì \(\left\{{}\begin{matrix}\text{FN ⊥ AC}\\\text{BF // AC}\end{matrix}\right.\)⇒ BF ⊥ FN
⇒ \(\widehat{BFN}=90^0\)
Tứ giác BFNK có \(\left\{{}\begin{matrix}\widehat{BFN}=90^0\\\widehat{B_1}=90^0\\\widehat{KNF}=90^0\end{matrix}\right.\)
⇒ Tứ giác BFNK là hình chữ nhật
⇒ FN = BK (2 đường chéo)
Vì tứ giác DFCK là hình bình hành
⇒ CF = DK
mà AB = CK
⇒ AB = CF
ΔABK và ΔCFN có \(\left\{{}\begin{matrix}\text{AB = CF}\\\widehat{CNF}=\widehat{AKB}=90^0\\\text{FN = BK}\end{matrix}\right.\)
⇒ ΔABK ~ ΔCFN (ch.cgv)
⇒ \(\widehat{A_2}=\widehat{ACF}\) (2)
Từ (1), (2) ⇒ Tứ giác BFCA là hình thang cân (đpcm)
d, Ta có
\(\left\{{}\begin{matrix}\text{Tứ giác ADBK là hình chữ nhật}\\\text{Đường chéo AB và DK}\\\text{AB cắt DK tại O}\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}\text{O là trung điểm của AB }\\\text{O là trung điểm của DK }\end{matrix}\right.\)
Vì I là trung điểm của FK
⇒ DI là đường trung tuyến của ΔCDK
Vì O là trung điểm của DK
⇒ FO là đường trung tuyến của ΔCDK
ΔCDK có
\(\left\{{}\begin{matrix}\text{DI là đường trung tuyến của ΔCDK}\\\text{FO là đường trung tuyến của ΔCDK}\\\text{DI cắt FO tại H}\end{matrix}\right.\)
⇒ H là trọng tâm của ΔCDK
⇒ DH = \(\frac{2}{3}\)DI (Trọng tâm của tam giác cách đều mỗi đỉnh một khoảng bằng \(\frac{2}{3}\) độ dài đường trung tuyến đi qua đỉnh đó) (3)
Vì I là trung điểm của CD
⇒ DI = \(\frac{1}{2}\)CD (4)
Thay (4) vào (3), ta có
DH = \(\frac{2}{3}.\frac{1}{2}\)CD
⇒ DH = \(\frac{1}{3}\)CD
⇒ CD = 3DH (đpcm)
Chúc bạn học tốt !!!
nhầm