
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Dựa vào đây mà làm nhé : Câu hỏi của nhi anny - Toán lớp 9 - Học toán với OnlineMath

Làm hơi tắt , thông cảm ;))
Từ (1) \(\Rightarrow36=\left(x+y+z\right)^2\Leftrightarrow36=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
\(\Leftrightarrow36=18+2\left(xy+yz+zx\right)\Leftrightarrow xy+yz+zx=9\)(4)
Từ (3) \(\Rightarrow16=\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\Leftrightarrow16=x+y+z+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)
\(\Leftrightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=5\Leftrightarrow\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2=25\)
\(\Leftrightarrow xy+yz+zx+2\left(\sqrt{xy^2z}+\sqrt{xyz^2}+\sqrt{x^2yz}\right)=25\)
\(\Leftrightarrow\sqrt{xyz}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)=8\Leftrightarrow\sqrt{xyz}=\frac{8}{4}\Leftrightarrow xyz=4\)(5)
Vậy hệ đã cho tương đương với :
\(\hept{\begin{cases}x+y+z=6\left(1\right)\\xy+yz+zx=9\left(4\right)\\xyz=4\left(5\right)\end{cases}}\)
Từ (5) \(\Rightarrow yz=\frac{4}{x}\)(Dễ thấy \(x,y,z>0\))
(4) \(\Leftrightarrow xy+yz+zx+x^2=9+x^2\Leftrightarrow x\left(x+y+z\right)+yz=9+x^2\)
\(\Leftrightarrow x.6+\frac{4}{x}=9+x^2\Leftrightarrow x^3-6x^2+9x-4=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=4\end{cases}.}\)
Thế vào ta suy ra hệ có các nghiệm : \(\left(x,y,z\right)=\left(1,1,4\right),\left(1,4,1\right),\left(4,1,1\right).\)

ẩn là số cần tìm vd: pt 2 ẩn tức là pt có 2 số cần tìm (6x+9y=69). pt 1 ẩn thì tương tự
Trở về yêu cầu
-pt bậc 2 1 ẩn có dạng \(ax^2+bx+c=0\)
-xác định \(\Delta\) : +)công thức \(\Delta=b^2-4ac\)
+)\(\Delta>0\) có 2 nghiệm pb tính theo công thức \(x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}\)
\(\Delta=0\) có 2 nghiệm kép tính theo công thức \(x=\frac{-b}{2a}\)
\(\Delta< 0\) vô nghiệm. cần lấy ví dụ thì nhắn cho cái


1. Tìm x thỏa mản phương trình x nguyên
\(\left|x+1\right|\left(x^2-5\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left|x+1\right|=0\Rightarrow x=-1\) ( nhận )
Hoặc
\(x^2-5=0\Rightarrow x^2=5\) ( loại )
Hoặc
\(x^2-4=0\Rightarrow x^2=2^2\Rightarrow x=\pm2\)
Vậy: \(x=\left(-2;-1;2\right)\)
Bài 1:
\(\left|x+1\right|\left(x^2-5\right)\left(x^2-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\left|x+1\right|=0\\x^2-5=0\\x^2-4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=\sqrt{5}\\x=\pm2\end{matrix}\right.\)
Do \(x\in Z\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\\x=-2\end{matrix}\right.\)
Vậy...
Bài 3:
\(x^2-2xy+2y^2=0\)
\(\Rightarrow x^2-2xy+y^2+y^2=0\)
\(\Rightarrow\left(x-y\right)^2+y^2=0\)
Mà \(\left(x-y\right)^2+y^2\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-y\right)^2=0\\y^2=0\end{matrix}\right.\Rightarrow x=y=0\)
Vậy...
Bài 5,6 áp dụng t/c dãy tỉ số bằng nhau là ra

\(\frac{2}{x-1}\)\(=4-m\)
Quy đồng và khử mẫu của phương trình ta được :
2 = ( 4 - m ) x + 4 + m
( 4 - m ) x = 2 + m
Để phương trình có nghiệm âm thì :
m - 4 dương và 2 + m âm ( không có giá trị m thỏa mãn )
hoặc m - 4 âm và 2 + m dương ( -3 < m < 4 )
Vậy phương trình có nghiệm âm khi m = { -2 ; -1 ; 0 ; 1 ; 2 ; 3 }

Gọi độ dài 3 cạnh của tam giác lần lượt là a,b,c khi đó độ dài đường cao tương ứng là 9,25,m trong đó:\(a,b,c\)là các số thực dương và \(m\in N\)
Theo đề ra,ta có:
\(9a=25b=2S\)(S là diện tích tam giác)
\(\Rightarrow a=\frac{2S}{9},b=\frac{2S}{25},c=\frac{2S}{m}\)
Áp dụng BĐT tam giác ta có:\(a-b< c< a+b\)
\(\Rightarrow\frac{225}{34}< m< \frac{225}{16}\)
\(\Rightarrow m=9\)vì m là số chính phương.
P/S:nếu có lỗi gì đó không nghiêm trọng đến mức sai bài giải,mong mọi người bỏ qua cho.

Đề : Một hình chữ nhật có chu vi bằng 80 cm. Tăng chiều rộng lên 3cm; tăng chiều dài lên 5 cm thì diện tích tăng thêm 195 cm^2.
Tìm chiều dài và chiều rộng ban đầu.
tùy thuộc vào phương trình bao nhiêu nha bạn ơi
Em cần ghi rõ phương trình lên đây thì mọi người mới có thể nói cho em biết phương trình đó có bao nhiêu ẩn.