
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


ĐK \(\frac{-11}{5}\le x\le6\)
Ta có: \(\sqrt{5x+11}-\sqrt{6-x}+5x^2-14x-60=0\)
\(\Leftrightarrow\left(\sqrt{5x+11}-6\right)-\left(\sqrt{6-x}-1\right)+\left(x-5\right)\left(5x+11\right)=0\)
\(\Leftrightarrow\frac{5\left(x-5\right)}{\sqrt{5x+11}+6}+\frac{x-5}{\sqrt{6-x}+1}+\left(x-5\right)\left(5x+11\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left[\frac{5}{\sqrt{5x+11}+6}+\frac{1}{\sqrt{6-x}}+5x+11\right]=0\)
\(\Leftrightarrow x=5\)(Do \(\frac{5}{\sqrt{5x+11}+6}+\frac{1}{\sqrt{6-x}}+5x+11>0\)với \(\frac{-11}{5}\le x\le6\)
Vậy pt đã cho có nghiệm duy nhất x=5

\(x^4+5x^2-6=0\)
\(\Leftrightarrow x^4+6x^2-x^2-6=0\)
\(\Leftrightarrow x^2\left(x^2+6\right)-\left(x^2+6\right)=0\)
\(\Leftrightarrow\left(x^2+6\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2+6\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}}\)(\(x^2+6>0\forall x\))
Vậy x={-1;1}
\(x^4+5x^2-6=0\)
Đặt \(x^2=t\left(t\ge0\right)\)Khi đó phương trình trở thành
\(t^2+5t-6=0\Leftrightarrow t^2-t+6t-6=0\)
\(\Leftrightarrow t.\left(t-1\right)+6.\left(t-1\right)=0\)
\(\Leftrightarrow\left(t-1\right).\left(t+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=1\left(TM\right)\\t=-6\left(L\right)\end{cases}}\)
Ta có \(x^2=1\Leftrightarrow x=\pm1\)
Vậy phương trình có 2 nghiệm \(x_1=-1;x_2=1\)

Lớp 9 đã học giải phương trình bậc 3 chưa nhỉ ?
\(4x^2-5x+6\sqrt{x}-8=0\)
\(< =>\left(4x^2-5x+6\sqrt{x}-8\right)x=0.x\)
\(< =>4x^3-5x^2-2x=0\)(đến đây giải pt bậc 3 hoặc làm theo mình)
\(< =>x\left(4x^2-5x-2\right)=0\)
\(< =>\orbr{\begin{cases}x=0\\4x^2-5x-2=0\left(1\right)\end{cases}}\)
Từ 1 ta có \(\Delta=\left(-5\right)^2-4.4.\left(-2\right)=25+32=57\)
Nên phương trình (1) có 2 nghiệm phân biệt
\(x_1=\frac{5+\sqrt{57}}{8}\)
\(x_2=\frac{5-\sqrt{57}}{8}\)
Vậy tập nghiệm của phương trình trên là \(\left\{0;\frac{5+\sqrt{57}}{8};\frac{5-\sqrt{57}}{8}\right\}\)
ĐK:..
Đặt: \(\sqrt{x}=t\ge0\) ta có phương trình ẩn t :
\(4t^4-5t^2+6t-8=0\)
<=> \(4t^4-\left(t^2-4t+4\right)-4t^2+2t-4=0\)
<=> \(\left(2t^2\right)^2-\left(t-2\right)^2-2\left(2t^2-t+2\right)=0\)
<=> \(\left(2t^2-t+2\right)\left(2t^2+t-2\right)-2\left(2t^2-t+2\right)=0\)
<=> \(\left(2t^2+t-4\right)\left(2t^2-t+2\right)\)= 0
<=> \(\orbr{\begin{cases}2t^2+t-4=0\\2t^2-t+2=0\left(vn\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}t=\frac{-1+\sqrt{33}}{4}\\t=\frac{-1-\sqrt{33}}{4}< 0\left(loai\right)\end{cases}}\)
Khi đó: \(\sqrt{x}=\frac{-1+\sqrt{33}}{4}\Leftrightarrow x=\frac{17-\sqrt{33}}{8}\)tm
Vậy:...

x² - 5x + 6 = 0
⇔ x² - 2x - 3x + 6 = 0
⇔ x(x - 2) - 3(x - 2) = 0
⇔ (x - 2)(x - 3) = 0
⇒S = {2 ; 3}.
Ta có : \(x^2+5x+6=0\)
\(\Leftrightarrow x^2+5x+\frac{25}{4}-\frac{1}{4}=0\)
\(\Leftrightarrow\left(x+\frac{5}{2}\right)^2-\frac{1}{4}=0\)
\(\Leftrightarrow\left(x+\frac{5}{2}-\frac{1}{2}\right)\left(x+\frac{5}{2}+\frac{1}{2}\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x+2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-2\end{cases}}\)


Ta có pt \(\Leftrightarrow2\left(x^2-5x\right)+\sqrt{5x-x^2}+6=0\)
Đặt \(\sqrt{5x-x^2}=a\left(a\ge0\right)\)
Ta có pt \(\Leftrightarrow-2a^2+a+6=0\Leftrightarrow2a^2-a-6=0\Leftrightarrow\left(2a+3\right)\left(a-2\right)=0\)
đến đây thay a=..rồi tự giải pt bậc 2 nhá !
^.^

bạn vào đây tham khảo :
Câu hỏi của Minh Hiền - Toán lớp 8 - Học toán với OnlineMath
https://olm.vn/hoi-dap/detail/18308516891.html
giai phuong trinh x^4+2x^3-4x^2-5x-6? | Yahoo Hỏi & Đáp
https://vn.answers.yahoo.com/question/index?qid=20120708195230AAFGVYu

\(Pt\Leftrightarrow\sqrt[5]{27}x^{10}+2\sqrt[5]{27}=5x^6\)
Áp dụng bất đẳng thức AM-GM cho 5 số dương:
\(VT=\frac{\sqrt[5]{27}x^{10}}{3}+\frac{\sqrt[5]{27}x^{10}}{3}+\frac{\sqrt[5]{27}x^{10}}{3}+\sqrt[5]{27}+\sqrt[5]{27}\ge5\sqrt[5]{\frac{27x^{30}}{27}}=5x^6=VF\)
Dấu = xảy ra khi \(\frac{\sqrt[5]{27}x^{10}}{3}=\sqrt[5]{27}\Leftrightarrow x^{10}=3\Leftrightarrow\orbr{\begin{cases}x=\sqrt[10]{3}\\x=-\sqrt[10]{3}\end{cases}}\)
Đặt `t=x^2` (ĐK: `t>=0`)
Phương trình trở thành:
`t^2+5t-6=0`
`Delta=5^2-4*1*(-6)=49>0`
\(\left[\begin{array}{l}t_1=\frac{-5+\sqrt{49}}{2}=1\left(N\right)\\ t_2=\frac{-5-\sqrt{49}}{2}=-6\left(L\right)\end{array}\right.\)
`=>t_1=1`
`=>x^2=1<=>x=+-1`
Vậy: `S={1;-1}`
Having reviewed all the previous interactions and the newly provided image, I will now solve the equation presented in "image_515fbc.png".
Giải phương trình x4+5x2−6=0
Đây là một phương trình trùng phương. Ta có thể giải nó bằng cách đặt ẩn phụ.
Đặt t=x2. Vì x2≥0, nên t≥0. Thay t vào phương trình, ta được: t2+5t−6=0
Đây là một phương trình bậc hai theo t. Ta có thể giải bằng cách dùng công thức nghiệm hoặc phân tích thành nhân tử. Ta nhận thấy 1+5−6=0, nên phương trình có nghiệm t1=1. Nghiệm còn lại là t2=ac=1−6=−6.
Ta có hai trường hợp cho t:
Vậy, phương trình đã cho có hai nghiệm thực là x=1 và x=−1.