K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Số vé học sinh bán được là:

\(\frac{200+40}{2}=120\left(vé\right)\)

Số vé người lớn bán được là 120-40=80(vé)

Gọi giá vé học sinh là x(đồng)

(Điều kiện: x>0)

Giá vé người lớn là x+2000(đồng)

số tiền thu được khi bán 120 vé học sinh là: 120x(đồng)

Số tiền thu được khi bán 80 vé người lớn là 80(x+2000)(đồng)

Tổng số tiền thu được là 1700000 đồng nên ta có:

\(120x+80\left(x+2000\right)=1700000\)

=>\(120x+80x+160000=1700000\)

=>200x=1700000-160000=1540000

=>x=7700(nhận)

Vậy: Giá mỗi vé học sinh là 7700 đồng

Giá mỗi vé người lớn là 7700+2000=9700 đồng

25 tháng 5

Gọi x là giá vé học sinh và y là giá vé người lớn. Gọi a là số vé học sinh và b là số vé người lớn.

Ta có hệ phương trình dựa trên đề bài:

  1. a+b=200
  2. a×x+b×y=1.700.000
  3. y=x+2000
  4. a=b+40

Thay (4) vào (1): (b+40)+b=200 2b+40=200 2b=160 b=80 (vé người lớn)

Từ đó: a=80+40 a=120 (vé học sinh)

Thay a=120 và b=80 vào (2): 120x+80y=1.700.000

Thay (3) vào phương trình trên: 120x+80(x+2000)=1.700.000 120x+80x+160.000=1.700.000 200x=1.700.000−160.000 200x=1.540.000 x=1.540.000÷200 x=7.700 (đồng)

Từ đó: y=7.700+2.000 y=9.700 (đồng)

Kết luận:

  • Giá vé học sinh là 7.700 đồng.
  • Giá vé người lớn là 9.700 đồng.

Câu 5:

AB=1,6+25=26,6(m)

Ta có: \(\hat{xAC}=\hat{ACB}\) (hai góc so le trong, Ax//BC)

\(\hat{xAC}=38^0\)

nên \(\hat{ACB}=38^0\)

Xét ΔABC vuông tại B có tan ACB\(=\frac{AB}{BC}\)

=>\(BC=\frac{AB}{\tan ACB}=\frac{26.6}{\tan38}\) ≃34,0(m)

=>Chiếc xe cách chân tòa nhà khoảng 34m


Câu 7:

Xét tứ giác AHBD có \(\hat{AHB}=\hat{ADB}=\hat{DBH}=90^0\)

nênAHBD là hình chữ nhật

=>HB=AD=68(m)

Xét ΔAHD vuông tại H có \(\tan HAB=\frac{HB}{AH}\)

=>\(AH=\frac{HB}{\tan HAB}=\frac{68}{\tan28}\) ≃127,89(m)

Xét ΔAHC vuông tại H có \(\tan HAC=\frac{HC}{HA}\)

=>\(HC=HA\cdot\tan HAC=127,89\cdot\tan43\) ≃119,26(m)

BC=BH+CH=68+119,26≃187,3(m)


22 tháng 8

dạ mình cần giúp ý cuối cùng ạ:<

a: ta có: AH⊥CD
OM⊥CD

BK⊥CD

Do đó: AH//OM//BK

Xét ΔAKB có

O là trung điểm của AB

ON//KB

DO đó: N là trung điểm của AK

=>AN=NK

b: Xét hình thang ABKH có

O là trung điểm của AB

OM//AH//BK

Do đó: M là trung điểm của HK

=>MH=MK

c: ΔOCD cân tại O

mà OM là đường cao

nên M là trung điểm của CD

Ta có: MC+CH=MH

MD+DK=MK

mà MC=MD và MH=MK

nên CH=DK

ABCD là hình vuông

mà O là giao điểm của hai đường chéo

nên AC⊥BD tại O; O là trung điểm chung của AC và BD; AC=BD

=>\(OA=OB=OC=OD=\frac{AC}{2}\)

=>\(AC=2\cdot AO=2\cdot2\sqrt2=4\sqrt2\) >4

=>C nằm ngoài (A;4cm)

Ta có: OA=OB=OD

\(OA=2\sqrt2\)

nên \(OB=OD=2\sqrt2\)

ΔOAB vuông tại O

=>\(OA^2+OB^2=AB^2\)

=>\(AB^2=\left(2\sqrt2\right)^2+\left(2\sqrt2\right)^2=8+8=16=4^2\)

=>AB=4(cm)

=>B nằm trên (A;4cm)

Ta có: ABCD là hình vuông

=>AB=AD=4cm

=>D nằm trên (A;4cm)

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=36+64=100=10^2\)

=>BC=10(cm)

Xét ΔABC vuông tại A có \(\sin C=\frac{AB}{BC}=\frac{6}{10}=\frac35\)

nên \(\hat{C}\) ≃37 độ

ΔABC vuông tại A

=>\(\hat{B}+\hat{C}=90^0\)

=>\(\hat{B}=90^0-37^0=53^0\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\left(1\right)\)

Xét ΔABD vuông tại A có AK là đường cao

nên \(BK\cdot BD=BA^2\left(2\right)\)

Từ (1),(2) suy ra \(BH\cdot BC=BK\cdot BD\)

c: \(BH\cdot BC=BD\cdot BK\)

=>\(\frac{BH}{BK}=\frac{BD}{BC}\)

=>\(\frac{BH}{BD}=\frac{BK}{BC}\)

Xét ΔBHK và ΔBDC có

\(\frac{BH}{BD}=\frac{BK}{BC}\)

góc HBK chung

Do đó: ΔBHK~ΔBDC
=>\(\hat{BKH}=\hat{BCD}=\hat{ACB}\)

a: Diện tích ban đầu là \(8\cdot20=160\left(m^2\right)\)

Độ dài cạnh góc vuông thứ nhất của phần bị thu hồi là

20-2x(m)

Độ dài cạnh góc vuông thứ hai của phần bị thu hồi là:

8-x(m)

Diện tích phần bị thu hồi là:

\(T=\frac12\left(20-2x\right)\left(8-x\right)=\frac12\left(2x-20\right)\left(x-8\right)=\left(x-10\right)\left(x-8\right)\left(m^2\right)\)

b: Diện tích đất bị thu hồi là 455:13=35(m)

=>(x-10)(x-8)=35

=>\(x^2-18x+80-35=0\)

=>\(x^2-18x+45=0\)

=>(x-3)(x-15)=0

=>\(\left[\begin{array}{l}x-3=0\\ x-15=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=3\left(nhận\right)\\ x=15\left(loại\right)\end{array}\right.\)

Vậy: x=3