K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 giờ trước (6:45)

A = 1 + \(\frac13+\frac19+\cdots+\frac{1}{243}+\frac{1}{729}\)

A x 3 = 3 + 1 + \(\frac19\) + ...+ \(\frac{1}{81}\) + \(\frac{1}{243}\)

A x 3 - A = 3 + 1 + \(\frac19\) + ...+ \(\frac{1}{81}\) + \(\frac{1}{243}\) -(1 + \(\frac13+\frac19+\cdots+\frac{1}{243}+\frac{1}{729}\) )

Ax3-A = 3+1+\(\frac19\)+...+\(\frac{1}{81}\)+\(\frac{1}{243}\)-1-\(\frac13\)-...-\(\frac{1}{81}\)-\(\frac{1}{243}\)-\(\frac{1}{729}\)

A x (3 -1) = (3-\(\frac{1}{243}\)) + (1-1)+...+(\(\frac{1}{243}\)-\(\frac{1}{243}\))

A x 2 = \(\frac{729}{243}\) - \(\frac{1}{243}\) + 0 + 0 ..+0

A x 2 = \(\frac{728}{243}\)

A = \(\frac{728}{243}\): 2

A = \(\frac{326}{243}\)


12 giờ trước (7:08)

b; B = \(\frac12+\frac14+\frac18+\frac{1}{16}+\frac{1}{64}\)

B x 2 = 1 + \(\frac12\) +\(\frac14\) +\(\frac18\) + \(\frac{1}{16}\)

B x 2 - B = 1+\(\frac12\) +\(\frac14\) +\(\frac18\) +\(\frac{1}{16}\) -(\(\frac12\)+\(\frac14\)+\(\frac18\)+\(\frac{1}{16}\)+\(\frac{1}{64}\))

B x(2 -1) = 1+\(\frac12\)+\(\frac14\)+\(\frac18\)+\(\frac{1}{16}\)-1-\(\frac12\)-\(\frac14\)-\(\frac18\)-\(\frac{1}{16}\)-\(\frac{1}{64}\)

B = (1-\(\frac{1}{64}\))+(\(\frac12\)-\(\frac12\))+..+(\(\frac{1}{16}\)-\(\frac{1}{16}\))

B = \(\frac{64}{64}-\frac{1}{64}\)

B = \(\frac{63}{64}\)


11 tháng 7 2017

A = 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729

A * 3= 3* ( 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729)

A* 3 = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243

A * 3 - A = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 - 1/3 - 1/9 - 1/27 - 1/81 - 1/243 - 1/729

A * 2     = 1 - 1/ 729

A * 2     = 1/728

A          = 1/728 : 2

A          = 2/728

Nếu không quy đồng Mẫu thì ta quy đồng Tử

P/S: 2/728 VÀ 1/2

1/2 = 1*2/ 2*2

     = 2/4 

So sánh 2/4 và 2/278 ta thấy phân số 2/4 lớn hơn.

Vậy 1/2 > A

                 Đ/S: A = 2/728

                        1/2 > A

11 tháng 7 2017

\(A=\frac{1}{3}+\frac{1}{3x3}+\frac{1}{3x3x3}+\frac{1}{3x3x3x3}+\frac{1}{3x3x3x3x3}+\frac{1}{3x3x3x3x3x3}.\)

\(3xA=1+\frac{1}{3}+\frac{1}{3x3}+\frac{1}{3x3x3}+\frac{1}{3x3x3x3}+\frac{1}{3x3x3x3x3}\)

\(2xA=3xA-A=1-\frac{1}{3x3x3x3x3x3}\)

\(A=\frac{1}{2}-\frac{1}{3x3x3x3x3x3}< \frac{1}{2}\)

17 tháng 1 2016

anh_hung_lang_la thì làm đi

17 tháng 1 2016

bọn kia có trả lời câu hỏi không thì bảo

 

 

 

24 tháng 6 2017

a, Gọi biểu thức đó là A

Ta có :

A = \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)

A x 3 = \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}-\frac{1}{729}\)

A x 3 = \(1+A-\frac{1}{729}\)

A x 3 = \(\frac{728}{729}+A\)

A x 2 + A = \(\frac{728}{729}+A\)

A x 2 = \(\frac{728}{729}\)(bỏ A ở cả 2 vế)

A = \(\frac{728}{729}\div2=\frac{364}{729}\)

Đáp án = \(\frac{364}{729}\)

b, Phần này mình nghĩ là bạn sai đề rồi. Phải là \(\frac{45\times16-17}{45\times15+28}\)

22 tháng 6 2017

dễ mk nhìn là biết

22 tháng 6 2017

Đặt A = \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)

3A = \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

3A - A = (\(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)) - (\(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\))

2A = 1 - \(\frac{1}{729}\) = \(\frac{728}{729}\)

A = \(\frac{728}{729}:2=\frac{364}{729}\)

Bài 1: Tìm x:a) \(X+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}=5\)b) \(X+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+\frac{1}{2.187}=3\)Bài 2: Tính:a) \(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+\frac{1}{5x6}\)b) \(5\frac{1}{2}+3\frac{5}{6}+\frac{2}{3}\)c) \(7\frac{7}{8}+1\frac{4}{6}+3\frac{3}{5}\)Bài 3: Cho phân số \(\frac{16}{21}\). Tìm một số tự nhiên biết rằng khi cùng...
Đọc tiếp

Bài 1: Tìm x:

a) \(X+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}=5\)

b) \(X+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+\frac{1}{2.187}=3\)

Bài 2: Tính:

a) \(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+\frac{1}{5x6}\)

b) \(5\frac{1}{2}+3\frac{5}{6}+\frac{2}{3}\)

c) \(7\frac{7}{8}+1\frac{4}{6}+3\frac{3}{5}\)

Bài 3: Cho phân số \(\frac{16}{21}\). Tìm một số tự nhiên biết rằng khi cùng bớt ở tử số và thêm ở mẫu số đó của phân số đã cho thì được phân số mới có giá trị bằng \(\frac{5}{7}\).

Bài 4: Hãy viết phân số lớn hơn \(\frac{8}{9}\)và nhỏ hơn \(\frac{8}{10}\). Có bao nhiêu phân só như vậy?

Bài 5: So sánh các phân số:

a) \(\frac{123}{789};\frac{123.123}{789.789}\)và \(\frac{123.123.123}{789.789.789}\)

b) \(\frac{45}{67};\frac{4.545}{6.767}\)và \(\frac{454.545}{676.767}\)

1

1)

a) \(x+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}=5\)

\(x+\frac{64}{128}+\frac{32}{128}+\frac{16}{128}+\frac{8}{128}+\frac{4}{128}+\frac{2}{128}+\frac{1}{128}=5\)

\(x+\frac{127}{128}=5\)

\(x=5-\frac{127}{128}=\frac{513}{128}\)

b) \(x+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+\frac{1}{2187}=3\)

\(x+\frac{729}{2187}+\frac{243}{2187}+\frac{81}{2187}+\frac{27}{2187}+\frac{9}{2187}+\frac{3}{2187}+\frac{1}{2187}=3\)

\(x+\frac{2186}{2187}=3\)

\(x=3-\frac{2186}{2187}=\frac{4375}{2187}\)

2)

a) \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)

\(=1-\frac{1}{6}=\frac{5}{6}\)

b) \(5\frac{1}{2}+3\frac{5}{6}+\frac{2}{3}\)

\(=\left(5+3\right)+\left(\frac{1}{2}+\frac{2}{3}+\frac{5}{6}\right)\)

\(=8+\left(\frac{3}{6}+\frac{4}{6}+\frac{5}{6}\right)\)

\(=8+2=10\)

c) \(7\frac{7}{8}+1\frac{4}{6}+3\frac{3}{5}\)

\(=\left(7+1+3\right)+\left(\frac{7}{8}+\frac{2}{3}+\frac{3}{5}\right)\)

\(=11+\left(\frac{105}{120}+\frac{80}{120}+\frac{72}{120}\right)\)

\(=11+\frac{257}{120}=\frac{1577}{120}\)

3) Gọi số đó là x. Theo đề ta có :

\(\frac{16-x}{21+x}=\frac{5}{7}\)

\(7\left(16-x\right)=5\left(21+x\right)\)

\(112-7x=105+5x\)

\(112-105=7x-5x\)

\(7=2x\)

\(x=\frac{7}{2}=3,5\) ( vô lí )

Vậy không có số tự nhiên để thõa mãn điều kiện trên.

\(A=\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2048}\)

\(A=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+...+\left(\frac{1}{1024}-\frac{1}{2048}\right)\)

\(A=1-\frac{1}{2048}\)

\(\Rightarrow\)\(A=\frac{2047}{2048}\)

\(3B=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)

\(3B-B=1-\frac{1}{2187}\)

\(2B=\frac{2186}{2187}\)

\(\Rightarrow B=\frac{2186}{4374}=\frac{1093}{2187}\)

a) = \(\frac{127}{96}\)

b) = \(\frac{255}{256}\)

c) Mik bỏ nha

d) = \(\frac{1023}{512}\)

e) = \(\frac{2343}{625}\)

10 tháng 8 2017

bạn có thể trả lời rõ ra được ko

22 tháng 10 2020

bài 1 tính nhanh

mik xin sửa đề câu a thành thế này ~

\(a,\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)

đặt \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)

 \(A\cdot2=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\) 

\(A\cdot2-A=\) (  \(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\) )  - (  \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\) )

\(A=1-\frac{1}{256}\)

\(A=\frac{255}{256}\)

\(b,\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)

đặt \(B=\) \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\) 

     \(B\cdot3=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

\(B\cdot3-B=\)  ( \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)) - \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\) ) 

\(B\cdot2=\) \(1-\frac{1}{729}\)

\(B\cdot2=\frac{728}{729}\)

\(B=\frac{728}{729}:2\)

\(B=\frac{364}{729}\) 

\(c,\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\)

ĐẶT \(C=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\)

    \(C=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}\)

\(C=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)

\(C=\frac{1}{1}-\frac{1}{6}\)

\(C=\frac{5}{6}\)

15 tháng 11 2020

Cảm ơn bạn nhé

5 tháng 8 2016

\(\text{Đặt : }A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)

\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

\(\Rightarrow3A-A=1-\frac{1}{729}\)

\(\Rightarrow2A=\frac{728}{729}\)

\(\Rightarrow A=\frac{728}{729}:2=\frac{364}{729}\)

5 tháng 8 2016

\(=\frac{364}{729}\)

1 tháng 12 2023

😵

1 tháng 12 2023

           A = \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\)

     2 \(\times\) A = 1   + \(\dfrac{1}{2}\) +  \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\)

 2 \(\times\) A - A = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) - (\(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\))

        A      = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) - \(\dfrac{1}{2}\) - \(\dfrac{1}{4}\) - \(\dfrac{1}{8}\) - \(\dfrac{1}{16}\) - \(\dfrac{1}{32}\)

        A       =  1 - \(\dfrac{1}{32}\)

        A       =   \(\dfrac{31}{32}\)