K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5

Chứng minh E = abc(a - b)(b - c)(c - a) luôn chia hết cho 12 với mọi số nguyên a, b, c:

Bước 1: Chứng minh chia hết cho 3
Trong 3 số a, b, c luôn có 2 số có cùng dư khi chia cho 3 ⇒ hiệu của chúng chia hết cho 3 ⇒ E chia hết cho 3.

Bước 2: Chứng minh chia hết cho 4
Trong 3 số luôn có ít nhất 1 số chẵn ⇒ abc chia hết cho 2.
Các hiệu cũng luôn có ít nhất 1 hiệu chẵn ⇒ tích ba hiệu chia hết cho 2.
⇒ E chia hết cho 4.

Kết luận: E chia hết cho cả 3 và 4 ⇒ E chia hết cho 12.

23 tháng 5

Xin tick ạ! 🥺🥺🥺

6 tháng 12 2015

a) http://olm.vn/hoi-dap/question/16196.html Bạn vào đây nhé !

b) ab = 10a + b 
ba = 10b + a 
=>ab + ba = 11(a+b) chia het cho 11.

c) aaa = a x 111 = a x 3 x 37 

=> aaa luôn chia hết cho 37

d) aaabbb=a000bx111 
111 chia hết cho 37 nên aaabbb chia hết cho 37 

e)  ab=10*a+b 
ba=10*b+a 
ab-ba=9*a-9*b=9*(a-b)=> ab-ba chia hết cho 9

 

6 tháng 12 2015

a)  Nếu a và b cùng là số chẵn thì ab﴾a+b﴿chia hết cho 2

 nếu a chẵn,b lẻ﴾hoặc a lẻ,b chẵn﴿thì ab ﴾a+b﴿ chia hết cho 2

Nếu a và b cùng lẻ thì ﴾a+b﴿ chẵn nên ﴾a+b﴿chia hết cho 2,vậy ab﴾a+b﴿ chia hết cho 2

Vậy nếu a,b thuộc N thì ab﴾a+b﴿ chia hết cho 2 

b) Ta có :ab= 10*a + b 
ba = 10*b + a 
=> ab + ba = 11(a+b) chia hết cho 11 
Vậy ab+ba chia hết cho 11

c)Ta có : aaa= a x 111 = a x 3 x 37 luôn luôn chia hết cho 37

d) aaabbb=aaa000+bbb=111﴾1000a+b﴿=37.3﴾1000a+b﴿ chia hết cho 37 

e) ab = 10 . a+b

ba = 10 .b+a ab ‐ ba = 9 . a ‐ 9 . b = 9 . (a ‐ b)

=> ab‐ba chia hết cho 9 

 

19 tháng 10 2019

                                                 Bài giải

a, TH1 :  Với a lẻ ta có : a + 3 = lẻ + lẻ = chẵn

                                    a + 6 = lẻ + chẵn = lẻ

=> ( a + 3 ) ( a + 6 ) = chẵn x lẻ = chẵn \(⋮\) 2

TH2 : Với a chẵn ta có : a + 3 = chẵn + lẻ = lẻ

                                    a + 6 = chẵn + chẵn = chẵn \(⋮\) 2

b, TH1 : Với a lẻ ta có : a + 5 = lẻ + lẻ =chẵn

=> a ( a + 5 ) = lẻ x chẵn = chẵn \(⋮\) 2

TH2 : Với a chẵn ta có : a + 5 = chẵn + lẻ = lẻ

=> a ( a + 5 ) = chẵn x lẻ = chẵn \(⋮\) 2

c, TH1 : a,b cùng chẵn

=> ab ( a + b ) = chẵn x chẵn x ( chẵn + chẵn ) = chẵn \(⋮\) 2

TH2 : a,b cùng lẻ

=> ab ( a + b ) = lẻ x ( lẻ + lẻ ) = chẵn \(⋮\) 2

TH3 : a,b một thừa số chẵn, một thừa số lẻ

=> ab ( a + b ) = chẵn ( lẻ + chẵn ) = chẵn x lẻ = chẵn \(⋮\) 2

AH
Akai Haruma
Giáo viên
18 tháng 7 2024

1.

$4-n\vdots n+1$

$\Rightarrow 5-(n+1)\vdots n+1$

$\Rightarrow 5\vdots n+1$
$\Rightarrow n+1\in \left\{1; 5\right\}$

$\Rightarrow n\in \left\{0; 4\right\}$

AH
Akai Haruma
Giáo viên
18 tháng 7 2024

2.

Nếu $n$ chẵn $\Rightarrow n+6$ chẵn.

$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$

Nếu $n$ lẻ $\Rightarrow n+3$ chẵn.

$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$

AH
Akai Haruma
Giáo viên
21 tháng 8 2024

Lời giải:

$a\vdots c\Rightarrow am\vdots c$ với mọi $m$ nguyên.

$b\vdots c\Rightarrow bn\vdots c$ với mọi $n$ nguyên.

$\Rightarrow am+bn\vdots c$ (đpcm)

4 tháng 11 2018

Xét với 

a;b có 1 trong 2 số lẻ

=> ab chẵn vì trong tích có 1 thừa số chẵn

Và a+b lẻ vì 1 trong 2 số lẻ

=>ab(a+b)

là chẵn.lẻ=chẵn

Mà số chẵn thì chia hết cho 2(ĐPCM)

Với a và b đều lẻ thì a+b chẵn ab lẻ

chẵn.lẻ=chẵn chia hết cho 2(ĐPCM)

Với a và b chẵn thì chắc chắn chia hết cho 2

b,Ta có:

ab+ba=a.10+b+b.10+a=11.(a+b) chia hết cho 11(ĐPCM)

c, Ta có:

aaa=a.100+a.10+a=a.111

Mà 111 chia hết cho 37

=>aaa chia hết cho 37

d, aaabbb=a.100000+a.10000+a.1000+b.100+b.10+b.1

=a.111000+b.111

Mà 111000 chia hết cho 37 và 111 chia hết cho 37

=> aaabbb luôn chia hết cho 37

e, ab-ba=(a.10+b)-(b.10+a)

=a.9-b.9

=9(a-b) chia hết cho 9

=> ab-ba luôn chia hết cho 9