K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5

Ko đọc đc

23 tháng 5

Đúng là ko đọc đc ý

1 tháng 9

Bạn chụp thẳng chút nhé. Mình không nhìn được

Bài 4:

a: ΔCAB vuông tại C

=>\(\hat{CAB}+\hat{CBA}=90^0\)

=>\(\hat{CBA}=90^0-70^0=20^0\)

Xét ΔCBA vuông tại C có \(\sin CBA=\frac{CA}{AB}\)

=>\(CA=AB\cdot\sin CBA=10\cdot\sin20\) ≃3,4(dm)

ΔCAB vuông tại C

=>\(CA^2+CB^2=AB^2\)

=>\(CB^2=AB^2-CA^2\)

=>\(CB=\sqrt{AB^2-AC^2}\) ≃9,4(dm)

b: Xét ΔABC vuông tại C có \(cosA=\frac{CA}{AB}\)

Xét ΔCHA vuông tại H có \(cosA=\frac{AH}{AC}\)

Xét ΔCHB vuông tại H có \(\sin B=\frac{CH}{CB}\)

Xét ΔCAB vuông tại C có \(\sin B=\frac{AC}{AB}\)

\(\sin B\cdot cosA=\frac{AC}{AB}\cdot\frac{AH}{AC}=\frac{AH}{AB}\)

Bài 5:

Xét ΔMAB có \(\hat{MBH}\) là góc ngoài tại đỉnh B

nên \(\hat{MBH}=\hat{A}+\hat{BMA}\)

=>\(\hat{BMA}=39^0-18^0=21^0\)

Xét ΔMAB có \(\frac{AB}{\sin AMB}=\frac{MB}{\sin A}\)

=>\(\frac{MB}{\sin18}=\frac{80}{\sin21}\)

=>\(MB=80\cdot\frac{\sin18}{\sin21}\) ≃69(m)

Xét ΔMHB vuông tại H có \(\sin HBM=\frac{HM}{MB}\)

=>\(HM=MB\cdot\sin HBM\) ≃69*sin39≃43,4(m)

=>Chiều cao của ngọn hải đăng là khoảng 43,4 mét

15 tháng 8

em cảm ơn a nhiều ạ

QT
Quoc Tran Anh Le
Giáo viên
28 tháng 8

a: Xét tứ giác SAOB có \(\hat{SAO}+\hat{SBO}=90^0+90^0=180^0\)

nên SAOB là tứ giác nội tiếp đường tròn đường kính SO

b: ΔOMN cân tại O

mà OI là đường trung tuyến

nên OI⊥MN tại I

Ta có: \(\hat{OIS}=\hat{OAS}=\hat{OBS}=90^0\)

=>O,I,A,S,B cùng thuộc đường tròn đường kính OS
c: Xét (O) có

SA,SB là các tiếp tuyến

Do đó: SA=SB

=>S nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1),(2) suy ra SO là đường trung trực của AB

=>SO⊥AB tại H và H là trung điểm của AB

Xét ΔSAO vuông tại A có AH là đường cao

nên \(SH\cdot SO=SA^2\)

d: Xét (O) có

\(\hat{SAM}\) là góc tạo bởi tiếp tuyến AS và dây cung AM

\(\hat{ANM}\) là góc nội tiếp chắn cung AM

Do đó: \(\hat{SAM}=\hat{ANM}\)

Xét ΔSAM và ΔSNA có

\(\hat{SAM}=\hat{SNA}\)

góc ASM chung

Do đó: ΔSAM~ΔSNA

=>\(\frac{SA}{SM}=\frac{SN}{SA}\)

=>\(SA^2=SM\cdot SN\)

a: ta có: AH⊥CD
OM⊥CD

BK⊥CD

Do đó: AH//OM//BK

Xét ΔAKB có

O là trung điểm của AB

ON//KB

DO đó: N là trung điểm của AK

=>AN=NK

b: Xét hình thang ABKH có

O là trung điểm của AB

OM//AH//BK

Do đó: M là trung điểm của HK

=>MH=MK

c: ΔOCD cân tại O

mà OM là đường cao

nên M là trung điểm của CD

Ta có: MC+CH=MH

MD+DK=MK

mà MC=MD và MH=MK

nên CH=DK

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=36+64=100=10^2\)

=>BC=10(cm)

Xét ΔABC vuông tại A có \(\sin C=\frac{AB}{BC}=\frac{6}{10}=\frac35\)

nên \(\hat{C}\) ≃37 độ

ΔABC vuông tại A

=>\(\hat{B}+\hat{C}=90^0\)

=>\(\hat{B}=90^0-37^0=53^0\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\left(1\right)\)

Xét ΔABD vuông tại A có AK là đường cao

nên \(BK\cdot BD=BA^2\left(2\right)\)

Từ (1),(2) suy ra \(BH\cdot BC=BK\cdot BD\)

c: \(BH\cdot BC=BD\cdot BK\)

=>\(\frac{BH}{BK}=\frac{BD}{BC}\)

=>\(\frac{BH}{BD}=\frac{BK}{BC}\)

Xét ΔBHK và ΔBDC có

\(\frac{BH}{BD}=\frac{BK}{BC}\)

góc HBK chung

Do đó: ΔBHK~ΔBDC
=>\(\hat{BKH}=\hat{BCD}=\hat{ACB}\)