Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Lần sau em đăng trong h.vn
1. \(log_{ab}c=\frac{1}{log_cab}=\frac{1}{log_ca+log_cb}=\frac{1}{\frac{1}{log_ac}+\frac{1}{log_bc}}=\frac{1}{\frac{log_ac+log_bc}{log_ac.log_bc}}=\frac{log_ac.log_bc}{log_ac+log_bc}\)
Đáp án B:
2. \(f'\left(x\right)=-4x^3+8x\)
\(f'\left(x\right)=0\Leftrightarrow-4x^3+8x=0\Leftrightarrow x=0,x=\sqrt{2},x=-\sqrt{2}\)
Có BBT:
x -căn2 0 căn2 f' f 0 0 0 - + - +
Nhìn vào bảng biên thiên ta có hàm số ... là đáp án C

Để kiểm tra một hàm F(x) có phải là một nguyên hàm của f(x) không thì ta chỉ cần kiểm tra F'(x) có bằng f(x) không?
a) \(F\left(x\right)\) là hằng số nên \(F'\left(x\right)=0\ne f\left(x\right)\)
b) \(G'\left(x\right)=2.\dfrac{1}{2}.\dfrac{1}{\cos^2x}=1+\tan^2x\)
c) \(H'\left(x\right)=\dfrac{\cos x}{1+\sin x}\)
d) \(K'\left(x\right)=-2.\dfrac{-\left(\dfrac{1}{2}.\dfrac{1}{\cos^2\dfrac{x}{2}}\right)}{\left(1+\tan\dfrac{x}{2}\right)^2}=\dfrac{\dfrac{1}{\cos^2\dfrac{x}{2}}}{\left(\dfrac{\cos\dfrac{x}{2}+\sin\dfrac{x}{2}}{\cos\dfrac{x}{2}}\right)^2}\)
\(=\dfrac{1}{\left(\cos\dfrac{x}{2}+\sin\dfrac{x}{2}\right)^2}=\dfrac{1}{1+2\cos\dfrac{x}{2}\sin\dfrac{x}{2}}\)
\(=\dfrac{1}{1+\sin x}\)
Vậy hàm số K(x) là một nguyên hàm của f(x).

a) Hàm số \(y=\left(x^3-8\right)^{\frac{\pi}{3}}\) xác định khi và chỉ khi \(x^8-8>0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)>0\Leftrightarrow x-2>0\Leftrightarrow x>2\)
Vậy tập xác định của hàm số là \(\left(2;+\infty\right)\)
Đạo hàm của hàm số là :
\(y'=\frac{\pi}{3}\left(x^3-8\right)'.\left(x^3-8\right)^{\frac{\pi}{3}-1}=\frac{\pi}{3}.3x^2\left(x^3-8\right)^{\frac{\pi}{3}-1}=x^2\left(x^3-8\right)^{\frac{\pi}{3}-1}\)
b) Hàm số xác định khi và chỉ khi \(x^2+x-6>0\Leftrightarrow x<-3\) hoặc \(x\ge2\)
Vậy tập xác định của hàm số là : \(\left(-\infty;-3\right)\cup\left(2;+\infty\right)\)
Đạo hàm của hàm số là :
\(y'=\frac{-1}{3}\left(x^2+x-6\right)'.\left(x^2+x-6\right)^{\frac{-1}{3}-1}=\frac{-\left(2x+1\right)\left(x^2+x-6\right)^{\frac{-4}{3}}}{3}\)
\(f\left(x\right)=\frac{x^2+1}{x-2}\)
=>\(f^{\prime}\left(x\right)=\frac{\left(x^2+1\right)^{\prime}\left(x-2\right)-\left(x^2+1\right)\left(x-2\right)^{\prime}}{\left(x-2\right)^2}\)
=>\(f^{\prime}\left(x\right)=\frac{2x\left(x-2\right)-\left(x^2+1\right)}{\left(x-2\right)^2}=\frac{2x^2-4x-x^2-1}{\left(x-2\right)^2}=\frac{x^2-4x-1}{\left(x-2\right)^2}\)
ra lắm câu hỏi vậy/ tự giải đi Long=\\\