Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 3:
a: \(\left|x+\frac{1}{1\cdot2}\right|+\left|x+\frac{1}{2\cdot3}\right|+\cdots\left|x+\frac{1}{2019\cdot2020}\right|=2020x\) (1)
=>2020x>=0
=>x>=0
Phương trình (1) sẽ trở thành:
\(x+\frac{1}{1\cdot2}+x+\frac{1}{2\cdot3}+\cdots+x+\frac{1}{2019\cdot2020}=2020x\)
=>\(2020x=2019x+\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdots+\frac{1}{2019\cdot2020}\right)\)
=>\(x=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdots+\frac{1}{2019\cdot2020}\)
=>\(x=1-\frac12+\frac12-\frac13+\cdots+\frac{1}{2019}-\frac{1}{2020}\)
=>\(x=1-\frac{1}{2020}=\frac{2019}{2020}\)
b: \(\left|x+\frac{1}{1\cdot3}\right|+\left|x+\frac{1}{3\cdot5}\right|+\cdots+\left|x+\frac{1}{197\cdot199}\right|=100x\) (2)
=>100x>=0
=>x>=0
(2) sẽ trở thành: \(x+\frac{1}{1\cdot3}+x+\frac{1}{3\cdot5}+\cdots+x+\frac{1}{197\cdot199}=100x\)
=>\(100x=99x+\frac12\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\cdots+\frac{2}{197\cdot199}\right)\)
=>\(x=\frac12\left(1-\frac13+\frac13-\frac15+\cdots+\frac{1}{197}-\frac{1}{199}\right)=\frac12\left(1-\frac{1}{199}\right)\)
=>\(x=\frac12\cdot\frac{198}{199}=\frac{99}{199}\)
c: \(\left|x+\frac12\right|+\left|x+\frac16\right|+\left|x+\frac{1}{12}\right|+\cdots+\left|x+\frac{1}{110}\right|=11x\left(3\right)\)
=>11x>=0
=>x>=0
(3) sẽ trở thành:
\(11x=x+\frac12+x+\frac16+\ldots+x+\frac{1}{110}\)
=>\(11x=10x+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdots+\frac{1}{10\cdot11}\)
=>\(x=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdots+\frac{1}{10\cdot11}\)
=>\(x=1-\frac12+\frac12-\frac13+\cdots+\frac{1}{10}-\frac{1}{11}=1-\frac{1}{11}=\frac{10}{11}\) (nhận)
Bài 2:
a: \(\left|5-\frac23x\right|\ge0\forall x;\left|\frac23y-4\right|\ge0\forall y\)
Do đó: \(\left|5-\frac23x\right|+\left|\frac23y-4\right|\ge0\forall x,y\)
Dấu '=' xảy ra khi \(\begin{cases}5-\frac23x=0\\ \frac23y-4=0\end{cases}\Rightarrow\begin{cases}\frac23x=5\\ \frac23y=4\end{cases}\Rightarrow\begin{cases}x=5:\frac23=\frac{15}{2}\\ y=4:\frac23=6\end{cases}\)
b: \(\left|\frac23-\frac12+\frac34x\right|=\left|\frac34x+\frac16\right|\ge0\forall x\)
\(\left|1,5-\frac34-\frac32y\right|=\left|\frac34-\frac32y\right|\ge0\forall y\)
Do đó: \(\left|\frac34x+\frac16\right|+\left|\frac34-\frac32y\right|\ge0\forall x,y\)
Dấu '=' xảy ra khi \(\begin{cases}\frac34x+\frac16=0\\ \frac34-\frac32y=0\end{cases}\Rightarrow\begin{cases}\frac34x=-\frac16\\ \frac32y=\frac34\end{cases}\Rightarrow\begin{cases}x=-\frac16:\frac34=-\frac16\cdot\frac43=-\frac{4}{18}=-\frac29\\ y=\frac34:\frac32=\frac24=\frac12\end{cases}\)
c: \(\left|x-2020\right|\ge0\forall x;\left|y-2021\right|\ge0\forall y\)
Do đó: \(\left|x-2020\right|+\left|y-2021\right|\ge0\forall x,y\)
Dấu '=' xảy ra khi \(\begin{cases}x-2020=0\\ y-2021=0\end{cases}\Rightarrow\begin{cases}x=2020\\ y=2021\end{cases}\)
d: \(\left|x-y\right|\ge0\forall x,y\)
\(\left|y+\frac{21}{10}\right|\ge0\forall y\)
Do đó: \(\left|x-y\right|+\left|y+\frac{21}{10}\right|\ge0\forall x,y\)
Dấu '=' xảy ra khi \(\begin{cases}x-y=0\\ y+\frac{21}{10}=0\end{cases}\Rightarrow x=y=-\frac{21}{10}\)
Bài 1:
a: \(\left|\frac32x+\frac12\right|=\left|4x-1\right|\)
=>\(\left[\begin{array}{l}4x-1=\frac32x+\frac12\\ 4x-1=-\frac32x-\frac12\end{array}\right.\Rightarrow\left[\begin{array}{l}4x-\frac32x=\frac12+1\\ 4x+\frac32x=-\frac12+1\end{array}\right.\)
=>\(\left[\begin{array}{l}\frac52x=\frac32\\ \frac{11}{2}x=\frac12\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac32:\frac52=\frac35\\ x=\frac12:\frac{11}{2}=\frac{1}{11}\end{array}\right.\)
b: \(\left|\frac75x+\frac12\right|=\left|\frac43x-\frac14\right|\)
=>\(\left[\begin{array}{l}\frac75x+\frac12=\frac43x-\frac14\\ \frac75x+\frac12=\frac14-\frac43x\end{array}\right.\Rightarrow\left[\begin{array}{l}\frac75x-\frac43x=-\frac14-\frac12\\ \frac75x+\frac43x=\frac14-\frac12\end{array}\right.\)
=>\(\left[\begin{array}{l}\frac{1}{15}x=-\frac34\\ \frac{41}{15}x=-\frac14\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-\frac34:\frac{1}{15}=-\frac34\cdot15=-\frac{45}{4}\\ x=-\frac14:\frac{41}{15}=-\frac14\cdot\frac{15}{41}=-\frac{15}{164}\end{array}\right.\)
c: \(\left|\frac54x-\frac72\right|-\left|\frac58x+\frac35\right|=0\)
=>\(\left|\frac54x-\frac72\right|=\left|\frac58x+\frac35\right|\)
=>\(\left[\begin{array}{l}\frac54x-\frac72=\frac58x+\frac35\\ \frac54x-\frac72=-\frac58x-\frac35\end{array}\right.\Rightarrow\left[\begin{array}{l}\frac54x-\frac58x=\frac35+\frac72\\ \frac54x+\frac58x=-\frac35+\frac72\end{array}\right.\)
=>\(\left[\begin{array}{l}\frac58x=\frac{41}{10}\\ \frac{15}{8}x=\frac{29}{10}\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac{41}{10}:\frac58=\frac{41}{10}\cdot\frac85=\frac{164}{25}\\ x=\frac{29}{10}:\frac{15}{8}=\frac{29}{10}\cdot\frac{8}{15}=\frac{116}{75}\end{array}\right.\)
d: \(\left|\frac78x+\frac56\right|-\left|\frac12x+5\right|=0\)
=>\(\left|\frac78x+\frac56\right|=\left|\frac12x+5\right|\)
=>\(\left[\begin{array}{l}\frac78x+\frac56=\frac12x+5\\ \frac78x+\frac56=-\frac12x-5\end{array}\right.\Rightarrow\left[\begin{array}{l}\frac78x-\frac12x=5-\frac56\\ \frac78x+\frac12x=-5-\frac56\end{array}\right.\)
=>\(\left[\begin{array}{l}\frac38x=\frac{25}{6}\\ \frac{11}{8}x=-\frac{35}{6}\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac{25}{6}:\frac38=\frac{25}{6}\cdot\frac83=\frac{200}{18}=\frac{100}{9}\\ x=-\frac{35}{6}:\frac{11}{8}=-\frac{35}{6}\cdot\frac{8}{11}=-\frac{140}{33}\end{array}\right.\)

Câu 1:
c: \(\frac19+\frac28+\frac37+\cdots+\frac91\)
\(=\left(\frac19+1\right)+\left(\frac28+1\right)+\cdots+\left(\frac82+1\right)+1\)
\(=\frac{10}{2}+\frac{10}{3}+\cdots+\frac{10}{10}=10\left(\frac12+\frac13+\cdots+\frac{1}{10}\right)\)
Ta có: \(\left(\frac12+\frac13+\frac14+\cdots+\frac{1}{10}\right)\cdot x=\frac19+\frac28+\frac37+\cdots+\frac91\)
=>\(x\left(\frac12+\frac13+\cdots+\frac{1}{10}\right)=10\left(\frac12+\frac13+\cdots+\frac{1}{10}\right)\)
=>x=10
Câu 2:
d: \(\frac{1}{1\cdot2\cdot3\cdot4}+\frac{1}{2\cdot3\cdot4\cdot5}+\cdots+\frac{1}{2021\cdot2022\cdot2023\cdot2024}\)
\(=\frac13\left(\frac{1}{1\cdot2\cdot3}-\frac{1}{2\cdot3\cdot4}+\frac{1}{2\cdot3\cdot4}-\frac{1}{3\cdot4\cdot5}+\cdots+\frac{1}{2021\cdot2022\cdot2023}-\frac{1}{2022\cdot2023\cdot2024}\right)\)
\(=\frac13\left(\frac{1}{1\cdot2\cdot3}-\frac{1}{2022\cdot2023\cdot2024}\right)\)

a) \(x+2x+3x+...+100x=-213\)
\(\Rightarrow x.\left(1+2+3+...+100\right)=-213\)
\(\Rightarrow x.5050=-213\Rightarrow x=\frac{-213}{5050}\)
b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}-4\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}-\frac{25}{6}\)
\(\Rightarrow\frac{1}{2}x-\frac{1}{3}=\frac{-47}{12}\)
\(\Rightarrow\frac{1}{2}x=\frac{-43}{12}\Rightarrow x=\frac{-43}{6}\)
d) \(\frac{x+1}{3}=\frac{x-2}{4}\Rightarrow4\left(x+1\right)=3\left(x-2\right)\Rightarrow4x+4=3x-6\)
\(\Rightarrow4x-3x=-6-4\Rightarrow x=-10\)
c) \(3\left(x-2\right)+2\left(x-1\right)=10\)
\(\Rightarrow3x-6+2x-2=10\)
\(\Rightarrow5x=18\Rightarrow x=\frac{18}{5}\)
a) \(x+2x+3x+4x+...+100x=-213\)
\(x.\left(1+2+3+4+...+100\right)=-213\)
\(x.5050=-213\)
\(x=-\frac{213}{5050}\)
b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}-4\frac{1}{6}\)
\(\frac{1}{2}x-\frac{1}{3}=-\frac{47}{12}\)
\(\frac{1}{2}x=-\frac{43}{12}\)
\(x=\frac{-43}{6}\)

\(a^{b^c}\ne\left(a^b\right)^c\). VD
\(2^{3^4}=2^{81}\ne\left(2^3\right)^4=2^{12}\)

\(từ\frac{x}{y}=\frac{4}{7}\) \(\Rightarrow\frac{x}{4}=\frac{y}{7}\)
\(\frac{x}{4}=\frac{y}{7}=\frac{3x^2}{48}=\frac{4y^2}{196}=\frac{3x^2-4y^2}{48-196}=\frac{100}{-148}=\frac{25}{-37}\)
\(\Rightarrow x^2=\frac{25}{37}\cdot4=\frac{100}{37}\)
còn lại bn tự lm
Từ x/y=4/7 => x/7 = 4y
Đặt x/4 = y/7 =k
=> x=4k; y=7k
mà 3x^3 - 4y^2 = 100
hay: 3. ( 4k)^2 - 4. ( 7k)^2
nhân vào là ra rồi xét 2 trường hợp
nếu muốn giải cụ thể thì kb rồi mk trả lời đầy đủ hơn cho

A, \(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\)
Để A nguyên thì \(\frac{21}{n-4}nguy\text{ê}n\Leftrightarrow n-4\in\text{Ư}\left(21\right)=\left\{-21;-7;-3;-1;1;3;7;21\right\}\)
n-4 | -21 | -7 | -3 | -1 | 1 | 3 | 7 | 21 |
n | -17 | -3 | 1 | 3 | 5 | 9 | 11 | 25 |
TM | TM | TM | TM | TM | TM | TM | TM |
B, \(B=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)
Để A ngyên <=> \(\frac{8}{2n-1}nguy\text{ê}n\Leftrightarrow2n-1\in\text{Ư}\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
-8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 | 2n-1 |
-3,5 | -1,5 | -0,5 | 0 | 1 | 1,5 | 2,5 | 4,5 | n |
loại | loại | loại | TM | TM | loại | loại | loại |
pạn có sách nâng cao và phát triển toán 7 ko trong đó có bài này. bài 7

a) +) tam giác ABC vuông tại A vì BC^2 = AB^2 + AC^2 \
+) AH.BC = AB.AC <=> AH = \(\frac{AB.AC}{BC}\) = ....
+) chu vi , diện tích tính đơn giản tự làm :))
b) tứ giác ADHE là hình chữ nhật vì góc A = góc D = góc E =90 độ => DE= AH ( 2 đường chéo )
c) vì ADHE là hcn -> đmcm
A = \(\frac12+\frac14+\frac18+\cdots+\) bao nhiêu em ơi?
Đề chưa đủ dữ liệu, em nhé. Em vui lòng đăng lại câu hỏi với nội dung đầy đủ. Có như vậy, em mới nhận được sự trợ giúp tốt nhất từ cộng đồng Olm.
????
bài này + cho đến cuối là bao nhiêu