
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(a.\frac12+\frac32x=\frac34\)
\(\frac32x=\frac34-\frac12=\frac14\)
\(x=\frac14:\frac32=\frac14\cdot\frac23=\frac16\)
\(b.2,5-2\cdot\left(x-0,5\right)=2\)
\(2\cdot\left(x-0,5\right)=2,5-2=0,5\)
\(x-0,5=0,5:2=0,25\)
\(x=0,25+0,5=0,75\)
\(c.\left(x+\frac32\right)^3=\frac{125}{8}=\left(\frac52\right)^3\)
\(x+\frac32=\frac52\)
\(x=\frac52-\frac32=\frac22=1\)
\(d.\left(x-\frac13\right)^2=\frac{25}{4}=\left(\pm\frac52\right)^2\)
\(\left[\begin{array}{l}x-\frac13=\frac52\Rightarrow x=\frac{17}{6}\\ x-\frac13=-\frac52\Rightarrow x=-\frac{13}{6}\end{array}\right.\)
vậy \(x\in\left\lbrace\frac{17}{6};-\frac{13}{6}\right\rbrace\)
\(e.7\cdot3^{x-1}-3^{x+2}=-540\)
\(3^{x-1}\cdot\left(7-3^3\right)=-540\)
\(3^{x-1}\cdot\left(7-27\right)=-540\)
\(3^{x-1}\cdot\left(-20\right)=-540\)
\(3^{x-1}=\left(-540\right):\left(-20\right)\)
\(3^{x-1}=27=3^3\)
⇒ x - 1 = 3
⇒ x = 4

Bài 8:
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b: ΔAHB=ΔAHC
=>HB=HC
=>H là trung điểm của BC
Xét ΔABC có
AH,BD là các đường trung tuyến
AH cắt BD tại G
Do đó: G là trọng tâm của ΔABC
c: Xét ΔABC có
G là trọng tâm
CG cắt AB tại E
Do đó: E là trung điểm của AB
Ta có: ΔAHB=ΔAHC
=>\(\hat{HAB}=\hat{HAC}\)
Ta có: \(AE=\frac{AB}{2}\) (E là trung điểm của AB)
\(AD=\frac{AC}{2}\) (D là trung điểm của AC)
mà AB=AC
nên AE=AD
Xét ΔAEH và ΔADH có
AE=AD
\(\hat{EAH}=\hat{DAH}\)
AH chung
Do đó: ΔAEH=ΔADH
=>HE=HD
=>ΔHED cân tại H
Bài 9:
1: Xét ΔBAE vuông tại A và ΔBHE vuông tai H có
BE chung
BA=BH
Do đó: ΔBAE=ΔBHE
2: ΔBAE=ΔBHE
=>EA=EH
=>ΔEAH cân tại E
3: Ta có: BA=BH
=>B nằm trên đường trung trực của AH(1)
Ta có: EA=EH
=>E nằm trên đường trung trực của AH(2)
Từ (1),(2) suy ra BE là đường trung trực của AH
4: Xét ΔBKC có
KH,CA là các đường cao
KH cắt CA tại E
Do đó: E là trực tâm của ΔBKC
=>BE⊥KC

Câu 7:
Giải:
Giá tiền của mỗi chiếc máy tính bán trong đợt đầu là:
8 x (100% + 30%) = 10,4(triệu đồng)
Tổng số tiền thu được khi bán 70 chiếc máy tính trong đợt đầu là:
10,4 x 70 = 728 (triệu đồng)
Giá của mỗi chiếc máy tính bán được trong đợt sau là:
10,4 x 65% = 6,76(triệu đồng)
Số tiền thu được khi bán hết số máy tính còn lại là:
6,76 x (100 - 70) = 202,8 (triệu đồng)
Tổng số tiền mà cửa hàng thu được khi bán hết 100 cái máy tính là:
728 + 202,8 = 930,8 (triệu đồng)
Tiền vốn của 100 cái máy tính là:
8 x 100 = 800 (triệu đồng)
Sau khi bán hết 100 máy tính thì người đó lãi và lãi số tiền là:
930,8 - 800 = 130,8 (triệu đồng)
Kết luận: Sau khi bán hết 100 máy tính người đó lãi và lãi số tiền là 130,8 triệu đồng
Bài 8:
a; Doanh thu năm 2019 là: 5,6 x \(\frac34\) = 4,2 (triệu usd)
b; Sau năm năm để lời 7,8 triệu usd thì năm 2020 phải thu được:
7,8 - (-1,8 + 5,6 - 3,6 + 4,2) = 3,4(triệu usd)
Kết luận: năm 2019 thu 4,2 triệu usd
năm 2020 thu 3,4 triệu usd

Gọi \(x\) là số quả táo của mỗi người ban đầu.
*Giá bán dự kiến của A là 10 000 đồng/3 quả, tức mỗi quả \(\frac{10 \textrm{ } 000}{3}\) đồng
*Giá bán dự kiến của B là 10 000 đồng/2 quả, tức mỗi quả 5 000 đồng.
+, Nếu bán riêng, số tiền dự kiến của cả hai là \(\frac{10 \textrm{ } 000}{3} x + 5 \textrm{ } 000 x\).
Khi B bán chung cả 2 loại táo với giá 20 000 đồng/5 quả, tức 4 000 đồng/quả, tổng số quả là \(2 x\) nên số tiền thực tế thu được là \(8 \textrm{ } 000 x\). Theo đề, số tiền thực tế ít hơn dự kiến 15 000 đồng nên ta có phương trình là:
\(\frac{10 \textrm{ } 000}{3} x + 5 \textrm{ } 000 x - 8 \textrm{ } 000 x = 15 \textrm{ } 000\)
=> \(x = 45\). Mỗi người có 45 quả, khi bán chung giá 4 000 đồng/quả, mỗi người nhận \(45 \times 4 \textrm{ } 000 = 180 \textrm{ } 000\) đồng. Vậy số tiền B thu nhiều hơn A là \(0\) đồng.

Đề tóm tắt:
- Tổng chi phí xây cầu: 340 triệu.
- Đơn vị 1: 8 xe, cách 1,5 km.
- Đơn vị 2: 5 xe, cách 3 km.
- Đơn vị 3: 4 xe, cách 1 km.
- Số tiền mỗi đơn vị đóng tỉ lệ thuận với số xe và tỉ lệ nghịch với khoảng cách.
Bước 1: Xác định "trọng số" của từng đơn vị
Công thức:
\(S \overset{ˊ}{\hat{o}} \&\text{nbsp}; t i \overset{ˋ}{\hat{e}} n \propto \frac{S \overset{ˊ}{\hat{o}} \&\text{nbsp}; x e}{K h o ả n g \&\text{nbsp}; c \overset{ˊ}{a} c h}\)
- Đơn vị 1: \(\frac{8}{1 , 5} = \frac{16}{3} \approx 5 , 33\).
- Đơn vị 2: \(\frac{5}{3} \approx 1 , 67\).
- Đơn vị 3: \(\frac{4}{1} = 4\).
Bước 2: Tổng hệ số
\(\frac{16}{3} + \frac{5}{3} + 4 = \frac{16 + 5}{3} + 4 = 7 + 4 = 11.\)
Bước 3: Phân chia số tiền
Tổng 340 triệu ứng với 11 phần.
→ Mỗi phần:
\(\frac{340}{11} \approx 30 , 91 \&\text{nbsp};\text{tri}ệ\text{u} .\)
- Đơn vị 1: \(\frac{16}{3} \times 30 , 91 \approx 164 , 85 \&\text{nbsp};\text{tri}ệ\text{u}\).
- Đơn vị 2: \(\frac{5}{3} \times 30 , 91 \approx 51 , 52 \&\text{nbsp};\text{tri}ệ\text{u}\).
- Đơn vị 3: \(4 \times 30 , 91 \approx 123 , 64 \&\text{nbsp};\text{tri}ệ\text{u}\).
✅ Kết quả:
- Đơn vị 1: khoảng 164,85 triệu đồng.
- Đơn vị 2: khoảng 51,52 triệu đồng.
- Đơn vị 3: khoảng 123,64 triệu đồng.
(Tổng đúng 340 triệu đồng).

Gọi ba phần được chia lần lượt là x,y,z
Ba phần được chia theo tỉ lệ là \(0,5:1\frac23:2\frac14=\frac12:\frac53:\frac94\) nên \(\frac{x}{\frac12}=\frac{y}{\frac53}=\frac{z}{\frac94}\)
Đặt \(\frac{x}{\frac12}=\frac{y}{\frac53}=\frac{z}{\frac94}=k\)
=>\(x=\frac12k;y=\frac53k;z=\frac94k\)
Tổng bình phương của ba phần được chia là 4660 nên ta có:
\(x^2+y^2+z^2=4660\)
=>\(\left(\frac12k\right)^2+\left(\frac53k\right)^2+\left(\frac94k\right)^2=4660\)
=>\(\frac14k^2+\frac{25}{9}k^2+\frac{81}{16}k^2=4660\)
=>\(k^2=576\)
=>\(\left[\begin{array}{l}k=24\\ k=-24\end{array}\right.\)
TH1: k=24
=>\(\begin{cases}x=\frac12\cdot24=12\\ y=\frac53\cdot24=40\\ z=\frac94\cdot24=54\end{cases}\)
A=x+y+z=12+40+54=62+54=116
TH2: k=-24
=>\(\begin{cases}x=\frac12\cdot\left(-24\right)=12\\ y=\frac53\cdot\left(-24\right)=40\\ z=\frac94\cdot\left(-24\right)=54\end{cases}\)
A=x+y+z=-12-40-54=-116

Các cặp góc so le trong là: \(\hat{A_1};\hat{B_7}\) ; \(\hat{A_4};\hat{B_6}\)
Các cặp góc đồng vị là: \(\hat{A_2};\hat{B_6}\) ; \(\hat{A_1};\hat{B_5}\) ; \(\hat{A_3};\hat{B_7}\); \(\hat{A_4};\hat{B_8}\)
Các cặp góc trong cùng phía là: \(\hat{A_1};\hat{B_6}\) ; \(\hat{A_4};\hat{B_7}\)
Các góc ngoài cùng phía là: \(\hat{A_3};\hat{B_8}\) ; \(\hat{A_2};\hat{B_5}\)
Các góc so le ngoài là: \(\hat{A_2};\hat{B_8}\) ; \(\hat{A_3};\hat{B_5}\)

a: x,y là hai đại lượng tỉ lệ nghịch
=>\(x_1\cdot y_1=x_2\cdot y_2\)
=>\(3\cdot y_1=2\cdot y_2\)
=>\(\frac{y_1}{2}=\frac{y_2}{3}\)
mà \(2y_1+3\cdot y_2=-26\)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{y_1}{2}=\frac{y_2}{3}=\frac{2y_1+3y_1}{2\cdot2+3\cdot3}=\frac{-26}{13}=-2\)
=>\(\begin{cases}y_1=-2\cdot2=-4\\ y_2=-2\cdot3=-6\end{cases}\)
b: \(x_1\cdot y_1=x_2\cdot y_2\)
=>\(x_1\cdot\left(-10\right)=y_2\cdot\left(-4\right)\)
=>\(5x_1=2y_2\)
=>\(\frac{x_1}{2}=\frac{y_2}{5}\)
mà \(3x_1-2y_2=32\)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{x_1}{2}=\frac{y_2}{5}=\frac{3x_1-2y_2}{3\cdot2-2\cdot5}=\frac{32}{-4}=-8\)
=>\(\begin{cases}x_1=-8\cdot2=-16\\ y_2=-8\cdot5=-40\end{cases}\)
Bài 3. a) A(x)=2x^2(x-3)-5(x^2-2x-5)
A(x)=2x^3-6x^2-5x^2+10x+25
A(x)=2x^3-11x^2+10x+25
B(x)=x^3-3x(x^2-2x-5)
B(x)=x^3-3x^3+6x^2+15x
B(x)=-2x^3+6x^2+15x
Đa thức A(x) có:
Bậc: 3
HSTD: 25
HSCN:2
b) A(x)-C(x)=B(x)
C(x)=A(x)-B(x)=2x^3-11x^2+10x+25+2x^3-6x^2-15x
C(x)=4x^3-17x^2-5x+25
c) P(x)=B(x)+2x^3=-2x^3+6x^2+15x+2x^3=6x^2+15x
Ta có: 6x^2+15x=0
x(6x+15)=0
x=0 hoặc 6x+15=0=>x=-5/2
Vậy x=0;x=-5/2 là nghiệm P(x)