\(\sqrt{1+2\sqrt{1+3\sqrt{1+4\sqrt{1+...}}}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2017

bn lấy máy tính mà tính ý

22 tháng 7 2017

Bài1:

Ta có:

a)\(\sqrt{\dfrac{3^2}{5^2}}=\sqrt{\dfrac{9}{25}}=\dfrac{3}{5}\)

b)\(\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}=\dfrac{\sqrt{9}+\sqrt{1764}}{\sqrt{25}+\sqrt{4900}}=\dfrac{3+42}{5+70}=\dfrac{45}{75}=\dfrac{3}{5}\)

c)\(\dfrac{\sqrt{3^2}-\sqrt{8^2}}{\sqrt{5^2}-\sqrt{8^2}}=\dfrac{\sqrt{9}-\sqrt{64}}{\sqrt{25}-\sqrt{64}}=\dfrac{3-8}{5-8}=\dfrac{-5}{-3}=\dfrac{5}{3}\)

Từ đó, suy ra: \(\dfrac{3}{5}=\sqrt{\dfrac{3^2}{5^2}}=\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}\)

Bài 2:

Không có đề bài à bạn?

Bài 3:

a)\(\sqrt{x}-1=4\)

\(\Rightarrow\sqrt{x}=5\)

\(\Rightarrow x=\sqrt{25}\)

\(\Rightarrow x=5\)

b)Vd:\(\sqrt{x^4}=\sqrt{x.x.x.x}=x^2\Rightarrow\sqrt{x^4}=x^2\)

Từ Vd suy ra:\(\sqrt{\left(x-1\right)^4}=16\)

\(\Rightarrow\left(x-1\right)^2=16\)

\(\Rightarrow\left(x-1\right)^2=4^2\)

\(\Rightarrow x-1=4\)

\(\Rightarrow x=5\)

30 tháng 10 2017

1.

0,2 . \(\sqrt{100}\) - \(\sqrt{\dfrac{16}{25}}\)

= 0,2 . 10 - \(\dfrac{4}{5}\)

= 2 - \(\dfrac{4}{5}\)

= \(\dfrac{6}{5}\)

30 tháng 10 2017

1/ \(0,2.\sqrt{100}-\sqrt{\dfrac{16}{25}}\)

\(=0,2.10-0,8\)

\(=2-0,8=1,2\)

2/ \(\dfrac{2^7.9^3}{6^5.8^2}\)

\(=\dfrac{93312}{497664}=\dfrac{3}{16}=0,1875\)

3/ \(\sqrt{0,01}-\sqrt{0,25}\)

\(=0,1-0,5\)

\(=-0,4\)

4/ \(0,5.\sqrt{100}-\sqrt{\dfrac{1}{4}}\)

\(=0,5.10-0,5\)

\(=5-0,5=4,5\)

5/ \(7.\sqrt{0,01}+2.\sqrt{0,25}\)

\(=7.0,1+2.0,5\)

\(=0,7+1=1,7\)

6/ \(0,5.\sqrt{100}-\sqrt{\dfrac{1}{25}}\)

\(=0,5.10-0,2\)

\(=5-0,2=4,8\)

21 tháng 9 2017

a)\(\sqrt{1}\)+\(\sqrt{9}\)+\(\sqrt{25}\)+\(\sqrt{49}\)+\(\sqrt{81}\)

=1+3+5+7+9

=25

b)=\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{4}\)

=\(\dfrac{6}{12}\)+\(\dfrac{4}{12}\)+\(\dfrac{2}{12}\)+\(\dfrac{3}{12}\)

=\(\dfrac{15}{12}\)

c) =0,2+0.3+0,4

= 0.9

d) =9-8+7

=8

j) =1,2-1,3+1.4

= (-0,1)+1,4

=1,4

g) \(\dfrac{2}{5}\)+\(\dfrac{5}{2}\)+\(\dfrac{9}{10}\)+\(\dfrac{3}{4}\)

= (\(\dfrac{4}{10}\)+\(\dfrac{15}{10}\)+\(\dfrac{9}{10}\))+\(\dfrac{3}{4}\)

= \(\dfrac{14}{5}\)+\(\dfrac{3}{4}\)

=\(\dfrac{56}{20}\)+\(\dfrac{15}{20}\)

= \(\dfrac{71}{20}\)

Nhớ tick cho mk nha~

23 tháng 7 2016

không biết làm

20 tháng 10 2019

đề bài ?

20 tháng 10 2019

TÌM X,Y

9 tháng 10 2016

CÁC câu này cứ bình phương 2 vế là ra ấy mà 

8 tháng 5

Câu a:

|\(\sqrt2\) - \(x\)| = \(\sqrt2\)

\(\left[\begin{array}{l}\sqrt2-x=\sqrt2\\ \sqrt2-x=-\sqrt2\end{array}\right.\)

\(\left[\begin{array}{l}x=0\\ x=2\sqrt2\end{array}\right.\)

Vậy \(x\in\) {0; \(2\sqrt2\)}

Câu b:

|\(x-1\)| = \(\sqrt3\) + 2

\(\left[\begin{array}{l}x-1=\sqrt3+2\\ x-1=-\sqrt{3-2}\end{array}\right.\)

\(\left[\begin{array}{l}x=\sqrt3+2+1\\ x=-\sqrt3-2+1\end{array}\right.\)

\(\left[\begin{array}{l}x=\sqrt3+\left(2+1\right)\\ x=-\sqrt3-\left(2-1\right)\end{array}\right.\)

\(\left[\begin{array}{l}x=\sqrt3+3\\ x=-\sqrt3-1\end{array}\right.\)

Vậy \(x\in\) {- \(\sqrt3\) - 1; \(\sqrt3\) + 3}

21 tháng 11 2019

29 tháng 10 2020

a) \(\left(\frac{2^2}{5}\right)+5\frac{1}{2}.\left(4,5-2,5\right)+\frac{2^3}{-4}\)

\(=\frac{4}{5}+\frac{11}{2}.2+\frac{-8}{4}\)

\(=\frac{4}{5}+11-2\)

\(=\frac{4}{5}+9\)

\(=\frac{49}{9}\)

b) \(\left(-2^3\right)+\frac{1}{2}:\frac{1}{8}-\sqrt{25}+\left|-64\right|\)

\(=-8+4-5+64\)

= 55

c) \(\frac{\sqrt{3^2+\sqrt{39}^2}}{\sqrt{91^2}-\sqrt{\left(-7\right)^2}}\)

\(=\frac{\sqrt{9+39}}{91-\sqrt{49}}\)

\(=\frac{\sqrt{48}}{91-7}\)

\(=\frac{4\sqrt{3}}{84}\)

\(=\frac{\sqrt{3}}{41}\)

d) Xem lại đề nhé em!

e) \(\sqrt{25}-3\sqrt{\frac{4}{9}}\)

\(=5-3.\frac{2}{3}\)

= 5 - 2

= 3

h) \(\left(-3^2\right).\frac{1}{3}-\sqrt{49}+\left(5^3\right):\sqrt{25}\)

\(=-9.\frac{1}{3}-7+125:5\)

\(=-3-7+25\)

= 15

21 tháng 7 2016

Câu a)
\(A=\sqrt{20+1}+\sqrt{40+2}+\sqrt{60+3}\)
\(=\sqrt{1\left(20+1\right)}+\sqrt{2\left(20+1\right)}+\sqrt{3\left(20+1\right)}\)
\(=\sqrt{20+1}\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)\)

\(B=\sqrt{1}+\sqrt{2}+\sqrt{3}+\sqrt{20}+\sqrt{40}+\sqrt{60}\)
\(=1\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)+\left(\sqrt{1}\cdot\sqrt{20}+\sqrt{2}\cdot\sqrt{20}+\sqrt{3}\cdot\sqrt{20}\right)\)
\(=\sqrt{1}\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)+\sqrt{20}\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)\)
\(=\left(\sqrt{20}+\sqrt{1}\right)\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)\)

Ta thấy: \(\hept{\begin{cases}\left(\sqrt{20+1}\right)^2=20+1\\\left(\sqrt{20}+\sqrt{1}\right)^2=20+1+2\sqrt{20}\end{cases}}\)
\(\Rightarrow\left(\sqrt{20+1}\right)^2< \left(\sqrt{20}+\sqrt{1}\right)^2\Rightarrow\sqrt{20+1}< \sqrt{20}+\sqrt{1}\)
Vậy A < B.

21 tháng 7 2016

a) A<B