K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5

Phương trình hoành độ giao điểm:

\(\frac{1}{2} x^{2} = m x - \frac{1}{2} m^{2} + m + 1 \Leftrightarrow x^{2} - 2 m x + m^{2} - 2 m - 2 = 0\)

\(\Delta^{'} = m^{2} - \left(\right. m^{2} - 2 m - 2 \left.\right) = 2 m + 2 > 0 \Rightarrow m > - 1\)

Khi đó theo Viet: \(\left{\right. x_{1} + x_{2} = 2 m \\ x_{1} x_{2} = m^{2} - 2 m - 2\)

\(\left(\mid x_{1} - x_{2} \mid\right)^{2} = 2 \Leftrightarrow \left(\left(\right. x_{1} - x_{2} \left.\right)\right)^{2} = 4\)

\(\Leftrightarrow \left(\left(\right. x_{1} + x_{2} \left.\right)\right)^{2} - 4 x_{1} x_{2} - 4 = 0\)

\(\Leftrightarrow 4 m^{2} - 4 \left(\right. m^{2} - 2 m - 2 \left.\right) - 4 = 0\)

\(\Leftrightarrow 8 m + 4 = 0\)

\(\Rightarrow m = - \frac{1}{2}\)

9 tháng 4 2022

Phương trình hoành độ giao điểm: 

x2 = 2x - m

<=> x2 - 2x + m = 0

Để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta>0\)

<=> (-1)2 - m > 0

<=> 1 - m > 0

<=> m < 1

Ta có: y1 = x12  

          y2 = x22 

y1 + y2 + x12x22 = 6(x1 + x2)

<=> x12 + x22 + x12x22 = 6(x1 + x2)

<=> (x1 + x2)- 2x1x2 + (x1x2)2 = 6(x1 + x2)

Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2\\x_1x_2=\frac{c}{a}=m\end{cases}}\)

<=> 22 - 2m + m2 = 6.2

<=> 4 - 2m + m2 = 12

<=> 4 - 2m + m2 - 12 = 0

<=> m2 - 2m - 8 = 0

<=> m = 4 (ktm) hoặc m = -2 (tm)

=> m = -2

a: Phương trình hoành độ giao điểm là: \(x^2-mx+m-1=0\)

\(\Delta=\left(-m\right)^2-4\cdot\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\)

Để (P) cắt (d) tại hai điểm phân biệt thì m-2<>0

hay m<>2

b: \(\left|x_A-x_B\right|< 3\)

\(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}< 3\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2< 9\)

\(\Leftrightarrow m^2-4\left(m-1\right)< 9\)

\(\Leftrightarrow\left(m-2\right)^2-3< 0\)

=>(m+1)(m-5)<0

=>-1<m<5

PTHĐGĐ là;

x^2-6x+m-3=0

Δ=(-6)^2-4(m-3)=36-4m+12=-4m+48

Để PT có hai nghiệm phân biệt thì -4m+48>0

=>m<12

(x1-1)(x2^2-x2(x1+x2-1)+x1x2-1)=2

=>(x1-1)(-x1x2+x2+x1x2-1)=2

=>x1x2-(x1+x2)+1=2

=>m-3-6+1=2

=>m-8=2

=>m=10

PTHĐGĐ là:

x^2-(m+2)x+2m=0

Δ=(m+2)^2-4*2m

=m^2+4m+4-8m

=m^2-4m+4

=(m-2)^2

Để PT có hai nghiệm phân biệt thì Δ>0

=>m-2<>0

=>m<>2

P=y1+y2-x1x2

=x1^2+x2^2-x1x2

=(x1+x2)^2-3x1x2

=(m+2)^2-3*2m

=m^2+4m+4-6m

=m^2-2m+1+3

=(m-1)^2+3>=3

Dấu = xảy ra khi m=1

18 tháng 5 2021

1/

\(\hept{\begin{cases}3x+4y=6\left(1\right)\\2x-y=-7\left(2\right)\end{cases}}\)

\(\left(2\right)\Leftrightarrow8x-4y=-28\left(3\right)\)

Cộng 2 vế của (1) với (3) \(\Rightarrow11x=-22\Rightarrow x=-2\) Thay vào (2) \(\Rightarrow2.\left(-2\right)-y=-7\Rightarrow y=3\)

2/

a/ d cắt p tại 2 điểm phân biệt khi \(x^2=5x+m\Leftrightarrow x^2-5x-m=0\) có 2 nghiệm phân biệt

Điều kiện \(\Delta=25+4m>0\Leftrightarrow m>-\frac{25}{4}\)

b/ Khi m=-4

\(x^2-5x+4=0\Rightarrow x_1=1;x_2=4\)

Khi m=-4 d cắt p tại 2 điểm phân biệt A(1;0) và B(4;0)

a: PTHDGĐ là:

x^2-(m-1)x-(m^2+1)=0

a*c=-m^2-1<0

=>(P) luôn cắt (d) tại hai điểm phân biệt nằm về hai phía của trục Oy

b: |x1|+|x2|=2căn 2

=>x1^2+x2^2+2|x1x2|=8

=>(x1+x2)^2-2x1x2+2|x1x2|=8

=>(m-1)^2-2(-m^2+1)+2|-m^2-1|=8

=>(m-1)^2+2(m^2+1)+2(m^2+1)=8

=>m^2-2m+1+4m^2+4=8

=>5m^2-2m-3=0

=>5m^2-5m+3m-3=0

=>(m-1)(5m+3)=0

=>m=1 hoặc m=-3/5

a: PTHĐGĐ là:

x^2-4x+4m^2+1=0

Δ=(-4)^2-4(4m^2+1)

=16-16m^2-4=-16m^2+12

Để (d) cắt (P) tại hai điểm phân biệt thì -16m^2+12>0

=>-16m^2>-12

=>m^2<3/4

=>\(-\dfrac{\sqrt{3}}{2}< m< \dfrac{\sqrt{3}}{2}\)

b: x1,x2 nguyên

=>x1+x2 nguyên và x2*x1 nguyên

=>4 nguyên và 4m^2+1 nguyên

=>4m^2 nguyên

=>m^2 nguyên

=>\(m=k^2\left(k\in Z\right)\)

7 tháng 4 2022

pt hoành độ giao điểm của (P) và (d) là \(mx^2=-3x+1\)\(\Leftrightarrow mx^2+3x-1=0\)(*)

pt (*) có \(\Delta=3^2-4.m.\left(-1\right)=4m+9\)

Vậy để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta=4m+9>0\Leftrightarrow m>-\frac{9}{4}\Leftrightarrow\hept{\begin{cases}m>-\frac{9}{4}\\m\ne0\end{cases}}\)

Khi đó áp dụng định lí Vi-ét, ta có \(x_1x_2=-\frac{1}{m}\)

A và B nằm cùng phía với trục tung \(\Rightarrow x_1,x_2\)cùng dấu \(\Rightarrow x_1x_2>0\)\(\Rightarrow-\frac{1}{m}>0\)\(\Leftrightarrow\frac{1}{m}< 0\)\(\Leftrightarrow m< 0\)

Vậy để (d) cắt (P) tại 2 điểm phân biệt thỏa mãn yêu cầu đề bài thì \(-\frac{9}{4}< m< 0\)

a: Thay x=-1 và y=3 vào (d), ta được:

-2-m+1=3

=>-1-m=3

=>m=-4

b: PTHĐGĐ là;

1/2x^2-2x+m-1=0

=>x^2-4x+2m-2=0

Δ=(-4)^2-4(2m-2)

=16-8m+8=-8m+24

Để (d) cắt (P) tại hai điểm phân biệt thì -8m+24>0

=>m<3

x1x2(y1+y2)+48=0

=>x1x2(x1^2+x2^2)+48=0

=>(2m-2)[4^2-2(2m-2)]+48=0

=>(2m-2)(16-4m+4)+48=0

=>(2m-2)*(20-4m)+48=0

=>40m-8m^2-40+8m+48=0

=>-8m^2+48m+8=0

=>m=3+căn 10 hoặc m=3-căn 10

28 tháng 3 2020

để (d) song song zới đường thẳng (d') 

=>\(\hept{\begin{cases}m+1=3\\-2m\ne4\end{cases}=>\hept{\begin{cases}m=2\\m\ne-2\end{cases}=>m=2}}\)

b)phương trình hoành độ giao điểm của (d) zà (P)

\(\frac{1}{2}x^2-\left(m+1\right)x+2m=0\Rightarrow x^2-2\left(m+1\right)x+4m=0\)

ta có \(\Delta=4\left(m+1\right)^2-4.4m=4\left(m^2+2m+1\right)-16m=4m^2-8m+4=4\left(m-1\right)^2\ge0\)

để d cắt P tại hai điểm phân biệt 

=>\(\Delta>0=>\left(m-1\right)^2>0=>m\ne1\)(1)

lại có \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=4m\end{cases}}\)

để 2 hoành độ dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2>0\\x_1x_2>0\end{cases}=>\hept{\begin{cases}2\left(m+1\right)>0\\4m>0\end{cases}=>\hept{\begin{cases}m>-1\\m>0\end{cases}\Rightarrow m>0}}\left(2\right)}\)

từ 1 zà 2 => m khác 1 , m lớn hơn 0 thì (d) cắt (P) tạ điểm phân biệt có hoành độ dương