K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

\(\hat{BAD}\) chung

Do đó: ΔABD~ΔACE

8 tháng 5

a) Xét ∆ABD và ∆ACE có:

ˆBACBAC^ chung,

ˆADB=ˆAEC=90°ADB^=AEC^=90°(gt)

Suy ra ∆ABD  ∆ACE (g.g)

23 tháng 5 2017

Hình (tự vẽ)

a) Xét \(\Delta ABDva\Delta ACE\):

\(\widehat{A}\left(chung\right)\)

\(\widehat{E}=\widehat{D}\left(=90'\right)\)

\(=>\Delta ABD\)đồng dạng \(\Delta ACE\left(g-g\right)\)

\(=>\frac{AB}{AC}=\frac{AD}{AE}< =>AB.AE=AC.AD\)

b)xét \(\Delta ADEva\Delta ABC\)

\(\widehat{A}\left(chung\right)\)

\(\frac{AB}{AC}=\frac{AD}{AE}\)

\(=>\Delta ADE\)đồng dạng \(\Delta ABC\left(c-g-c\right)\)

c)Lưu Ý! Đề phải là DE cắt CB tại I

CM:

\(\widehat{IEB}=\widehat{AED}\)(đối đỉnh)

\(\widehat{AED}=\widehat{ACB}\)(tam giác ADE đồng dạng với tam giác ABC)

\(=>\widehat{IEB}=\widehat{ACB}\)

Lại có góc I chung

\(=>\Delta IBE\) đồng dạng với \(\Delta IDC\left(g-g\right)\)

d) từ c)=>\(\frac{IB}{ID}=\frac{IE}{IC}< =>ID.IE=IB.IC=\left(OI-OB\right)\left(OI+OC\right)\)

Mà OC=OB(gt)

\(=>ID.IE=\left(OI+OC\right)\left(OI-OC\right)=OI^2-OC^2\)

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

\(\hat{DAB}\) chung

Do đó: ΔADB~ΔAEC

b: Xét ΔFEB vuông tại E và ΔFDC vuông tại D có

\(\hat{EFB}=\hat{DFC}\) (hai góc đối đỉnh)

Do đó: ΔFEB~ΔFDC

=>\(\frac{EF}{DF}=\frac{EB}{DC}\)

=>\(EF\cdot DC=EB\cdot DF\)

c: Ta có: BH⊥BA

CF⊥AB

Do đó: BH//CF

Ta có: BF⊥CA

CH⊥CA

Do đó: BF//CH

Xét tứ giác BFCH có

BF//CH

BH//CF

Do đó: BFCH là hình bình hành

=>BC cắt FH tại trung điểm của mỗi đường

mà G là trung điểm của BC

nên G là trung điểm của FH

Xét ΔAFH có

G,I lần lượt là trung điểm của FH,FA

=>GI là đường trung bình của ΔAFH

=>GI//AH và \(GI=\frac12AH\)

=>AH=2GI

ΔEBC vuông tại E

mà EG là đường trung tuyến

nên GE=GB=GC

Xét ΔGEB có \(\hat{EGC}\) là góc ngoài tại đỉnh G

nên \(\hat{EGC}=\hat{GEB}+\hat{GBE}=2\cdot\hat{GBE}=2\cdot\hat{ABC}\) (1)

ΔAFE vuông tại E

mà EI là đường trung tuyến

nên IE=IF=IA

Xét ΔEIF có \(\hat{EIA}\) là góc ngoài tại đỉnh I

nên \(\hat{EIA}=\hat{IEF}+\hat{IFE}=2\cdot\hat{IFE}\) (2)

Xét ΔABC có

BD,CE là các đường cao

BD cắt CE tại F

Do đó: F là trực tâm của ΔABC

=>AF⊥BC

=>\(\hat{FAB}+\hat{ABC}=90^0\)

\(\hat{FAB}+\hat{AFE}=90^0\)

nên \(\hat{ABC}=\hat{AFE}\) (3)

Từ (1),(2),(3) suy ra \(\hat{EIA}=\hat{EGC}\)

23 tháng 8 2020

a) Xét 2 tam giác ADB và BCD có:

góc DAB = góc DBC (gt)

góc ABD = góc BDC ( so le trong )

nên tam giác ADB đồng dạng với tam giác BDC.(1)

b) Từ (1) ta được AB/BC = DB/CD = AB/BD

hay ta có; AD/BC = AB/BD <==> 3,5/BC = 2,5/5

==> BC= 3,5*5/2,5 = 7 (cm)

ta cũng có: DB/CD = AB/BD <==> 5/CD = 2,5/5

==> CD = 5*5/2,5 =10 (cm)

c) Từ (1) ta được;

AD/BC = DB/CD = AB/BD hay 3.5/7 = 5/10 = 2,5/5 = 1/2 .

ta nói tam giác ADB đồng giạc với tam giác BCD theo tỉ số đồng dạng là 1/2

mà tỉ số diện tích bằng bình phương tỉ số động dạng

do đó S ADB/ S BCD = (1/2)^2 = 1/4

a: Xét ΔAED vuông tại E và ΔADB vuông tại D có

\(\hat{EAD}\) chung

Do đó: ΔAED~ΔADB

=>\(\frac{AE}{AD}=\frac{AD}{AB}\)

=>\(AE\cdot AB=AD^2\left(1\right)\)

b: Xét ΔAFD vuông tại F và ΔADC vuông tại D có

\(\hat{FAD}\) chung

Do đó: ΔAFD~ΔADC

=>\(\frac{AF}{AD}=\frac{AD}{AC}\)

=>\(AF\cdot AC=AD^2\left(2\right)\)

Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)

=>\(\frac{AE}{AC}=\frac{AF}{AB}\)

Xét ΔAEF và ΔACB có

\(\frac{AE}{AC}=\frac{AF}{AB}\)

góc FAE chung

Do đó: ΔAEF~ΔACB

=>\(\hat{AFE}=\hat{ABC}\)

c: Xét tứ giác AEDF có \(\hat{AED}+\hat{AFD}=90^0+90^0=180^0\)

nên AEDF là tứ giác nội tiếp

=>\(\hat{EFD}=\hat{EAD}\)

\(\hat{EAD}=\hat{EDB}\left(=90^0-\hat{ABD}\right)\)

nên \(\hat{EFD}=\hat{EDB}\)

=>\(\hat{IDE}=\hat{IFD}\)

Xét ΔIDE và ΔIFD có

\(\hat{IDE}=\hat{IFD}\)

góc DIE chung

Do đó: ΔIDE~ΔIFD
=>\(\frac{ID}{IF}=\frac{IE}{ID}\)

=>\(ID^2=IE\cdot IF\)

31 tháng 3 2019

A B C D E 6 H

a) BC = \(\sqrt{AB^2+AC^2}\)\(\sqrt{6^2+8^2}\)\(\sqrt{100}\)= 10 (theo định lí Pythagoras)

\(\Delta\)ABC có BD là phân giác => \(\frac{AD}{AB}\)\(\frac{CD}{BC}\)\(\frac{AD}{DC}\)\(\frac{AB}{BC}\)\(\frac{6}{10}\)\(\frac{3}{5}\).

b) Ta có : \(\widehat{ABE}\)\(\widehat{EBC}\)(BD là phân giác)

=> \(\Delta ABD\)\(\Delta EBC\)(gg)

=> \(\frac{BD}{BC}\)\(\frac{AD}{EC}\)<=>  BD.EC = AD.BC (đpcm).

c) Ta có : \(\Delta CHE\)\(\Delta CEB\)( 2 tam giác vuông có chung góc C )

=> \(\frac{CH}{CE}\)\(\frac{CE}{CB}\)<=>  CH.CB = CE2                                                     (1)

                \(\Delta CDE\)\(\Delta BDA\)(gg  (2 góc đối đỉnh))

                 \(\Delta BDA~\Delta BCE\) (câu b))

=> \(\Delta CDE~\Delta BCE\)

=> \(\frac{CE}{BE}\)\(\frac{DE}{CE}\)<=> BE.DE = CE2                                                        (2)

Từ (1) và (2) => CH.CB = ED.EB (đpcm).

17 tháng 3 2020

Mọi người cho mình xin câu d thôi cũng được

Mình cảm ơn

20 tháng 4

bạn có đ/án ch ạ cho mình xin vs


2 tháng 4 2023

Giai dùm câu d

22 tháng 3 2020

a, ABD đồng dạng ACE (g.g) (có chung góc A và cùng có 1 góc vuông)

b, từ câu a => AD/AB = AE/AC

2 tam giác có chung góc A => đồng dạng  (c.g.c)