
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



B = 1 + 2\(^2\) + 2\(^4\) + ... + 2\(^{2024}\) + 2\(^{2026}\)
2\(^2\) B = 2\(^2\) + 2\(^4\) + ...+ \(2^{2026}\) + 2\(^{2028}\)
4B - B = 2\(^2\) + 2\(^4\) + ...+ \(2^{2026}\) + 2\(^{2028}\) - 1 - 2\(^2\) - 2\(^4\) - ... - 2\(^{2024}\) - 2\(^{2026}\)
3B = (2\(^2\) - 2\(^2\)) + (2\(^4\) - 2\(^4\)) +...+ (2\(^{2026}\) - \(2^{2026}\)) + (2\(^{2028}\) - 1)
3B = 0 + 0 +... + 0 + 2\(^{2028}\) - 1
3B = 2\(^{2028}\) - 1
B = \(\frac{2^{2028}-1}{3}\)
Ta có: \(B=1+2^2+2^4+\cdots+2^{2024}+2^{2026}\)
=>\(4B=2^2+2^4+2^6+\ldots+2^{2026}+2^{2028}\)
=>\(4B-B=2^2+2^4+2^6+\cdots+2^{2026}+2^{2028}-1-2^2-\cdots-2^{2026}\)
=>\(3B=2^{2028}-1\)
=>\(B=\frac{2^{2028}-1}{3}\)

a, A tập con của N . cách viết sai ; A thuộc N . Cách viết đúng
b, { 2 } ; { 3 } ; { 5 } ; { 2 ; 3 } ; { 2 ; 5 } ; { 3 ; 5 } ; { 2 ; 3 ; 5 } ; Rỗng.
k mình nha

Ta có : \(\frac{10^{1995}+8}{9}=\left(1000...000+8\right)\div9=1000...0008\div9\)
có 1995 c/s 0 có 1994 c/s 0
Mà tổng các chữ số của \(1000...0008\)(có 1994 c/s 0) là 9 nên \(1000...008⋮9\)
Từ đó suy ra \(\frac{10^{1995}+8}{9}\)là một số tự nhiên (đpcm)
Tổng các chữ số của 101995 là:
1 + 0 . 1995 = 1.
=> Tổng các chữ số của 101995 + 8 là: 1 + 8 = 9 chia hết cho 9.
=> 101995 + 8 chia hết cho 9.
=> \(\frac{10^{1995}+8}{9}\) là 1 số tự nhiên.
Vậy ..........

sao vậy bn oi?