K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5

Ta có: 10n10n- 1 = (10...0) - 1 (n chữ số 0)


= 999..99 (n chữ số 9)


= 9(11...1) (n chữ số 1)


10n10n - 1 + 72n = 9(11...1) + 72n = 9(11....1 + 8n) = 9(11...1 - n + 9n)


Ta thấy 11...1 có n chữ số 


⇒ 11...1 - n chia hết cho 9


Mà 9n chia hết cho 9


⇒ 11...1 - n + 9n chia hết cho 9


Mà 9 chia hết cho 9


⇒ 9(11...1 - n + 9n) chia hết cho 81 (đpcm)

DD
28 tháng 5 2021

\(B=10^n+72n-1\)

\(=10^n-1-9n+81n\)

\(=99...9-9n+81n\)(\(n\)chữ số \(9\))

\(=9\times11...1-9n+81n\)(\(n\)chữ số \(1\))

\(=9\times\left(11...1-n\right)+81n\)(\(n\)chữ số \(1\)

Ta có: \(11...1-n⋮9\)(\(n\)chữ số \(1\)) vì tổng các chữ số của \(11...1\)là \(n\)nên \(11...1\equiv n\left(mod9\right)\).

Do đó \(9\times\left(11...1-n\right)⋮81\Leftrightarrow B⋮81\).

28 tháng 5 2021

mod là gì vậy Đoàn Đức Hà ơi

1 tháng 1 2016

10^n+72n-1 
=10^n-1+72n 
=(10-1)[10^(n-1)+10^(n-2)+...+10+1]+72n 
=9[10^(n-1)+10^(n-2)+...+10+1]-9n+81n 
=9[10^(n-1)+10^(n-2)+...+10+1-n]+81n 
=9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n 
ta có 10^k - 1 = (10-1)[10^(k-1)+...+10+1] chia hết cho 9 =>9[(10^(n-1)-1) +(10^(n-2)-1) +... +(10-1) +(1-1)] chia hết cho 81 =>9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n chia hết cho 81 =>đpcm.

28 tháng 5 2021

Ta Có:

Cho biểu thức trên là B

\(b\)\(=\)\(10\)\(^n\)\(72n\)\(-1\)

 \(=10\)\(^n\)\(+72n\)\(-1\)

\(=10^{n^{ }}\)\(-1\)(có n\(-1chữ\) số 9)=9\(x\)(11....1)(có n chữ số 1)

B= 10n-1+72n=9x(11....1)+72n 

=>B:9=11....1+8n=11....1-n+9n

Ta Thấy:11....1 có n chữ số1 có tổng các chữ số là n

=>11....1-n chia hết cho 9

=>B:9=11....1-n+9n chia hết cho 9

Vậy B chia hết cho 81

Ta Có:

Cho biểu thức trên là B

bb==1010nn72n72n−1−1

 =10=10nn+72n+72n−1−1

=10n=10n−1−1(có n−1chữ−1chữ số 9)=9xx(11....1)(có n chữ số 1)

B= 10n-1+72n=9x(11....1)+72n 

=>B:9=11....1+8n=11....1-n+9n

Ta Thấy:11....1 có n chữ số1 có tổng các chữ số là n

=>11....1-n chia hết cho 9

=>B:9=11....1-n+9n chia hết cho 9

Vậy B chia hết cho 81

15 tháng 12 2015

Bạn tham khảo cách giải trong câu hỏi tương tự nha !!!

11 tháng 4 2016

Gọi biểu thức trên là A.

Ta có:

A = 10n + 72n - 1

= 10n - 1 + 72n

10n - 1 = 999...999 (có n chữ số 9) = 9 x (111...111) (có n chữ số 1)

A = 10n - 1 + 72n = 9 x (111...111) + 72n 

=> A : 9 + 8n = 111...111 - n + 9n

Ta thấy: 111...111 có n chữ số 1 có tổng các chữ số là n

=> 111...111 - n chia hết cho 9

=> A : 9 = 111...111 - n + 9n chia hết cho9

<=> A chia hết cho 81

=> ĐPCM

10^n+72n-1 
=10^n-1+72n 
=(10-1)[10^(n-1)+10^(n-2)+...+10+1]+72n 
=9[10^(n-1)+10^(n-2)+...+10+1]-9n+81n 
=9[10^(n-1)+10^(n-2)+...+10+1-n]+81n 
=9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n 
ta có 10^k - 1 = (10-1)[10^(k-1)+...+10+1] chia hết cho 9 =>9[(10^(n-1)-1) +(10^(n-2)-1) +... +(10-1) +(1-1)] chia hết cho 81 =>9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n chia hết cho 81 =>đpcm.

tích nha

23 tháng 11 2015

ta có

A=10^n+72n-1=10^n-1+72n

10^n-1=99..9(có n-1 số n)=9.(11...1) có n số1

A=10^n-1+72n+9x(11..1)+72n suy ra A chia hết cho 9= 11..11+8n=11.11-n+9n

ta thấy 11..1 có n số 1 có tổng các chữ số là n 

suy ra 11..1-n chia hết cho 9 

tick nha

23 tháng 11 2015

Ta có :

Cho biểu thức tính trên là A

A = 10 n + 72n ‐ 1 = 10 n ‐ 1 + 72n

10 n ‐ 1 = 99...9 ﴾có n‐1 chữ số 9﴿ = 9x﴾11..1﴿ ﴾có n chữ số 1﴿

A = 10 n ‐ 1 + 72n = 9x﴾11...1﴿ + 72n => A : 9 = 11..1 + 8n = 11...1 ‐n + 9n

Ta thấy: 11...1 có n chữ số 1 có tổng các chữ số là n => 11..1 ‐ n chia hết cho 9

=> A : 9 = 11..1 ‐ n + 9n chia hết cho 9

Vậy A chia hết cho 81 

a:Sửa đề: \(10^{n}+18n-1\) chia hết cho 27

Đặt \(A=10^{n}+18n-1\)

\(=\left(10^{n}-1\right)+18n=99\ldots9+18n\) (n chữ số 9)

=9(11...1+2n)⋮9

11..1+2n=n+2n=3n⋮3

=>A⋮9*3

=>A⋮27

b: Sửa đề: \(10^{n}+72n-1\)

Đặt \(B=10^{n}+72n-1\)

\(=\left(10^{n}-1\right)+72n\)

=99...9+72n(n chữ 9)

=9(11...1+8n)

11...1+8n=n+8n=9n⋮9

=>B⋮9*9

=>B⋮81

28 tháng 11 2015

a) Ta có: 

\(10^n+72n-1=\left(10^n-1\right)+72n=999...9+72n=9.111...11+72\)

                                                                                                       -------------                                   ----------------

                                                                                                      n chữ số                                      n chữ số 

\(=9\left(111...11-n\right)+9n+72n=9\left(111...11-n\right)+81n\)

             ----------------                                                                 ----------------

              n chữ số                                                                      n chữ số

Vì n là tổng các chữ số của 111...11 nên 111...11-n chia hết cho 9 

                                                  -----------         -----------

                                                    n c/số             n c/số

=> 9(111...11-n) chia hết cho 9.9 hay 9(111...11-n) chia hết cho 81

          ----------                                                ----------

           n c/số                                                  n c/số

Mà 81n chia hết cho 81 nên 9(111...11-n)+81n chia hết cho 81 hay \(10^n+72n-1\) chia hết cho 81

\(\left(n\in N\right)\)

 Vậy \(10^n+72n-1\) chia hết cho 81 \(\left(n\in N\right)\)

28 tháng 11 2015

b)  Với \(x,y\in N\) ta có:

      3(2x+y)-(x+3y)=6x+3y-x-3y=(6x-x)+(3y-3y)=5x 

Vì 5 chia hết cho 5 nên 5x chia hết cho 5 hay 3(2x+y)+(x+3y) chia hết cho 5                                        \(\left(1\right)\)

Vì 2x+y chia hết cho 5 nên 3(2x+y) chia hết cho 5                                                                                       \(\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\)=> x+3y chia hết cho 5

               Vậy x+3y chia hết cho 5

24 tháng 11 2015

10^n+72n-1 
=10^n-1+72n 
=(10-1)[10^(n-1)+10^(n-2)+...+10+1]+72n 
=9[10^(n-1)+10^(n-2)+...+10+1]-9n+81n 
=9[10^(n-1)+10^(n-2)+...+10+1-n]+81n 
=9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n 
Ta có:

10^k - 1 = (10-1)[10^(k-1)+...+10+1] chia hết cho 9

=>9[(10^(n-1)-1) +(10^(n-2)-1) +... +(10-1) +(1-1)] chia hết cho 81

=>9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n chia hết cho 81

=>đpcm.