Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(B=10^n+72n-1\)
\(=10^n-1-9n+81n\)
\(=99...9-9n+81n\)(\(n\)chữ số \(9\))
\(=9\times11...1-9n+81n\)(\(n\)chữ số \(1\))
\(=9\times\left(11...1-n\right)+81n\)(\(n\)chữ số \(1\))
Ta có: \(11...1-n⋮9\)(\(n\)chữ số \(1\)) vì tổng các chữ số của \(11...1\)là \(n\)nên \(11...1\equiv n\left(mod9\right)\).
Do đó \(9\times\left(11...1-n\right)⋮81\Leftrightarrow B⋮81\).

10^n+72n-1
=10^n-1+72n
=(10-1)[10^(n-1)+10^(n-2)+...+10+1]+72n
=9[10^(n-1)+10^(n-2)+...+10+1]-9n+81n
=9[10^(n-1)+10^(n-2)+...+10+1-n]+81n
=9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n
ta có 10^k - 1 = (10-1)[10^(k-1)+...+10+1] chia hết cho 9 =>9[(10^(n-1)-1) +(10^(n-2)-1) +... +(10-1) +(1-1)] chia hết cho 81 =>9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n chia hết cho 81 =>đpcm.

Ta Có:
Cho biểu thức trên là B
\(b\)\(=\)\(10\)\(^n\)+ \(72n\)\(-1\)
\(=10\)\(^n\)\(+72n\)\(-1\)
\(=10^{n^{ }}\)\(-1\)(có n\(-1chữ\) số 9)=9\(x\)(11....1)(có n chữ số 1)
B= 10n-1+72n=9x(11....1)+72n
=>B:9=11....1+8n=11....1-n+9n
Ta Thấy:11....1 có n chữ số1 có tổng các chữ số là n
=>11....1-n chia hết cho 9
=>B:9=11....1-n+9n chia hết cho 9
Vậy B chia hết cho 81
Ta Có:
Cho biểu thức trên là B
bb==1010nn+ 72n72n−1−1
=10=10nn+72n+72n−1−1
=10n=10n−1−1(có n−1chữ−1chữ số 9)=9xx(11....1)(có n chữ số 1)
B= 10n-1+72n=9x(11....1)+72n
=>B:9=11....1+8n=11....1-n+9n
Ta Thấy:11....1 có n chữ số1 có tổng các chữ số là n
=>11....1-n chia hết cho 9
=>B:9=11....1-n+9n chia hết cho 9
Vậy B chia hết cho 81

Gọi biểu thức trên là A.
Ta có:
A = 10n + 72n - 1
= 10n - 1 + 72n
10n - 1 = 999...999 (có n chữ số 9) = 9 x (111...111) (có n chữ số 1)
A = 10n - 1 + 72n = 9 x (111...111) + 72n
=> A : 9 + 8n = 111...111 - n + 9n
Ta thấy: 111...111 có n chữ số 1 có tổng các chữ số là n
=> 111...111 - n chia hết cho 9
=> A : 9 = 111...111 - n + 9n chia hết cho9
<=> A chia hết cho 81
=> ĐPCM
10^n+72n-1
=10^n-1+72n
=(10-1)[10^(n-1)+10^(n-2)+...+10+1]+72n
=9[10^(n-1)+10^(n-2)+...+10+1]-9n+81n
=9[10^(n-1)+10^(n-2)+...+10+1-n]+81n
=9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n
ta có 10^k - 1 = (10-1)[10^(k-1)+...+10+1] chia hết cho 9 =>9[(10^(n-1)-1) +(10^(n-2)-1) +... +(10-1) +(1-1)] chia hết cho 81 =>9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n chia hết cho 81 =>đpcm.
tích nha

ta có
A=10^n+72n-1=10^n-1+72n
10^n-1=99..9(có n-1 số n)=9.(11...1) có n số1
A=10^n-1+72n+9x(11..1)+72n suy ra A chia hết cho 9= 11..11+8n=11.11-n+9n
ta thấy 11..1 có n số 1 có tổng các chữ số là n
suy ra 11..1-n chia hết cho 9
tick nha
Ta có :
Cho biểu thức tính trên là A
A = 10 n + 72n ‐ 1 = 10 n ‐ 1 + 72n
10 n ‐ 1 = 99...9 ﴾có n‐1 chữ số 9﴿ = 9x﴾11..1﴿ ﴾có n chữ số 1﴿
A = 10 n ‐ 1 + 72n = 9x﴾11...1﴿ + 72n => A : 9 = 11..1 + 8n = 11...1 ‐n + 9n
Ta thấy: 11...1 có n chữ số 1 có tổng các chữ số là n => 11..1 ‐ n chia hết cho 9
=> A : 9 = 11..1 ‐ n + 9n chia hết cho 9
Vậy A chia hết cho 81

a:Sửa đề: \(10^{n}+18n-1\) chia hết cho 27
Đặt \(A=10^{n}+18n-1\)
\(=\left(10^{n}-1\right)+18n=99\ldots9+18n\) (n chữ số 9)
=9(11...1+2n)⋮9
11..1+2n=n+2n=3n⋮3
=>A⋮9*3
=>A⋮27
b: Sửa đề: \(10^{n}+72n-1\)
Đặt \(B=10^{n}+72n-1\)
\(=\left(10^{n}-1\right)+72n\)
=99...9+72n(n chữ 9)
=9(11...1+8n)
11...1+8n=n+8n=9n⋮9
=>B⋮9*9
=>B⋮81

a) Ta có:
\(10^n+72n-1=\left(10^n-1\right)+72n=999...9+72n=9.111...11+72\)
------------- ----------------
n chữ số n chữ số
\(=9\left(111...11-n\right)+9n+72n=9\left(111...11-n\right)+81n\)
---------------- ----------------
n chữ số n chữ số
Vì n là tổng các chữ số của 111...11 nên 111...11-n chia hết cho 9
----------- -----------
n c/số n c/số
=> 9(111...11-n) chia hết cho 9.9 hay 9(111...11-n) chia hết cho 81
---------- ----------
n c/số n c/số
Mà 81n chia hết cho 81 nên 9(111...11-n)+81n chia hết cho 81 hay \(10^n+72n-1\) chia hết cho 81
\(\left(n\in N\right)\)
Vậy \(10^n+72n-1\) chia hết cho 81 \(\left(n\in N\right)\)
b) Với \(x,y\in N\) ta có:
3(2x+y)-(x+3y)=6x+3y-x-3y=(6x-x)+(3y-3y)=5x
Vì 5 chia hết cho 5 nên 5x chia hết cho 5 hay 3(2x+y)+(x+3y) chia hết cho 5 \(\left(1\right)\)
Vì 2x+y chia hết cho 5 nên 3(2x+y) chia hết cho 5 \(\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\)=> x+3y chia hết cho 5
Vậy x+3y chia hết cho 5

10^n+72n-1
=10^n-1+72n
=(10-1)[10^(n-1)+10^(n-2)+...+10+1]+72n
=9[10^(n-1)+10^(n-2)+...+10+1]-9n+81n
=9[10^(n-1)+10^(n-2)+...+10+1-n]+81n
=9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n
Ta có:
10^k - 1 = (10-1)[10^(k-1)+...+10+1] chia hết cho 9
=>9[(10^(n-1)-1) +(10^(n-2)-1) +... +(10-1) +(1-1)] chia hết cho 81
=>9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n chia hết cho 81
=>đpcm.
Ta có: 10n10n- 1 = (10...0) - 1 (n chữ số 0)
= 999..99 (n chữ số 9)
= 9(11...1) (n chữ số 1)
⇒ 10n10n - 1 + 72n = 9(11...1) + 72n = 9(11....1 + 8n) = 9(11...1 - n + 9n)
Ta thấy 11...1 có n chữ số
⇒ 11...1 - n chia hết cho 9
Mà 9n chia hết cho 9
⇒ 11...1 - n + 9n chia hết cho 9
Mà 9 chia hết cho 9
⇒ 9(11...1 - n + 9n) chia hết cho 81 (đpcm)