
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


fgjghjffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
ket ban vs mik di!

Ta có : \(A=\frac{3n-5}{n+4}\)
\(A=\frac{3\left(n+4\right)-17}{n+4}\)
\(A=3-\frac{17}{n+4}\)
Để \(A\in Z\)thì \(17⋮n+4\) \(\Rightarrow n+4\inƯ_{\left(17\right)}=\left\{\pm1;\pm17\right\}\)
Ta có bảng sau :
n+4 | 1 | -1 | 17 | -17 |
n | -3 | -5 | 13 | -21 |
Vậy ....
giải tạp :))) tk đêyyyyyyy
Để \(A\in Z\)
\(\Leftrightarrow\frac{3n-5}{n+4}\in Z\)
\(\Leftrightarrow3n-5⋮n+4\)
\(\Leftrightarrow3n+12-17⋮n+4\)
\(\Leftrightarrow3\left(n+4\right)-17⋮n+4\)
\(\Leftrightarrow17⋮n+4\)
Mà \(n\in N\Rightarrow n\ge0\)
\(\Rightarrow n+4\ge4\)
\(\Rightarrow n+4=17\)
\(\Rightarrow n=13\)
Vậy \(n=13\Leftrightarrow A\in Z\)

Sửa đề : v
\(S=\frac{14}{1.3}+\frac{14}{3.5}+\frac{14}{5.7}+\frac{14}{7.9}+...+\frac{14}{13.15}\)
\(S=7.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{13.15}\right)\)
\(S=7.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)\)
\(S=7.\left(1-\frac{1}{15}\right)\)
\(S=7.\frac{14}{15}=\frac{98}{15}\)
mình tính cái đa thức ở sau nhé:
=14.(1/1.3+1/3.5+...+1/13.15)
=7.(1-1/3+1/3-1/5+...+1/13-1/15)
=7.(1-1/15)
=7.(14/15)
=98/15
còn a,b là gì thì mình ko bt

dấu đầu tiên là lớn hơn hoặc bằng
dấu tứ hai đc gọi là tập hợp con

\(A=4\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{94.97}\right)\)
\(A=4\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{94}-\frac{1}{97}\right)\)
\(A=4.\left(1-\frac{1}{97}\right)=\frac{4.96}{97}=\frac{384}{97}\)


đăng xuất chẳng hạn
Đăng là Đăng chứ Đăng là gì?🙂🙏