Cho đường tròn (O:R) qua điểm K ở ngoài đường tròn kẻ các tiếp tuyến KB và KD ( B và...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Chứng minh \(\hat{K D A} = \hat{K C D}\)

  • Chứng minh tứ giác KBOD nội tiếp:
    • Ta có \(K B\) và \(K D\) là các tiếp tuyến của đường tròn \(\left(\right. O ; R \left.\right)\) tại \(B\) và \(D\) nên: \(\hat{K B O} = 9 0^{\circ}\) \(\hat{K D O} = 9 0^{\circ}\)
    • Xét tứ giác \(K B O D\), có: \(\hat{K B O} + \hat{K D O} = 9 0^{\circ} + 9 0^{\circ} = 18 0^{\circ}\)
    • Vậy tứ giác \(K B O D\) nội tiếp đường tròn (tổng hai góc đối bằng \(18 0^{\circ}\)).
  • Chứng minh \(\hat{K D A} = \hat{K B A}\)
    • Xét tứ giác \(K B O D\) nội tiếp, ta có: \(\hat{K D A}=\hat{K B A}\)
  • Chứng minh \(\hat{K B A} = \hat{K C A}\)
    • Xét đường tròn \(\left(\right. O ; R \left.\right)\), ta có: \(\hat{K B A}=\hat{K C A}\)
  • Kết luận:
    • Từ các chứng minh trên, ta có: \(\hat{K D A} = \hat{K B A} = \hat{K C A}\)
    • Vậy \(\hat{K D A} = \hat{K C A}\), hay \(\hat{K D A} = \hat{K C D}\) (điều phải chứng minh).

Xét (O) có

\(\hat{KDA}\) là góc tạo bởi tiếp tuyến DK và dây cung DA

\(\hat{ACD}\) là góc nội tiếp chắn cung AD

Do đó: \(\hat{KDA}=\hat{ACD}=\hat{KCD}\)

31 tháng 12 2015

A B C D O M

a) BC vuông góc với AO là theo tính chất hai tiếp tuyến đi qua 1 điểm A

b) Xét hai tam giác DCO và DBA có góc D chung và góc C = góc B = 90 độ (tính chất tiếp tuyến)

=> tam giác DCO đồng dạng với tam giác DBA

=>  DC/DB = DO/DA

=> DC.DA = DO.DB (đpcm)

c) Vì OM vuông góc với DB => OM // BA (cùng vuông góc với DB)

Ta có AM/DM + 1 = (AM + DM)/DM = DA/DM

Theo Viet ta có: DA/DM = AB/MO

=> AM/DM + 1 = AB/OM

=> AB/OM - AM/DM = 1    (*)

Ta lại có tam giác MOA cân (vì góc MOA = góc BAO do so le trong, góc MAO = góc BAO do tính chất hai tiếp tuyến cùng 1 điểm)

=> OM = AM

(*) trở thành: AB/AM - AM/DM = 1 (đpcm)

Bài 1: Cho đường tròn (I; R) nội tiếp tam giác ABC tiếp xúc với BC tại D. Gọi M và N lần lượt là trung điểm của AD và BC. Chứng minh M, I, N thẳng hàng Bài 2: cho đường tròn tâm O và 3 dây cung song song với nhau là AA', BB', CC'. Chứng minh rằng trực tâm các tam giác ABC'; BCA' và CAB' cùng nằm trên 1 đường thẳng Bài 3: Trên đường thẳng a cho các điểm A, B, C và trên đường thẳng b cho M, N, P thỏa mãn...
Đọc tiếp

Bài 1: Cho đường tròn (I; R) nội tiếp tam giác ABC tiếp xúc với BC tại D. Gọi M và N lần lượt là trung điểm của AD và BC. Chứng minh M, I, N thẳng hàng

Bài 2: cho đường tròn tâm O và 3 dây cung song song với nhau là AA', BB', CC'. Chứng minh rằng trực tâm các tam giác ABC'; BCA' và CAB' cùng nằm trên 1 đường thẳng

Bài 3: Trên đường thẳng a cho các điểm A, B, C và trên đường thẳng b cho M, N, P thỏa mãn vectoAB=k. vectoAC và vectoMN=k. vectoMP (k khác 1). Giả sử X, Y, Z là các điểm chia các đoạn thẳng AM, BN và CP theo cùng 1 tỉ số. CMR: X, Y, Z thẳng hàng

Bài 4: Cho góc xOy và 2 điểm M, N di chuyển trên 2 cạnh Ox, Oy thỏa mãn OM=2ON.
a)) CMR: trung điểm I của MN luôn thuộc 1 đường thẳng cố định
b)) Nghiên cứu trường hợp giả thiết thay OM=2ON thành OM=mON với m là 1 hằng số cố định
c)) Nghiên cứu trường hợp thay giả thiết I là trung điểm MN thành giả thiết I là điểm chia MN theo tỉ số k cố định. (toán lớp 10 ạ)

0

a: ΔOCD can tại O

mà OI là trung tuyến

nên OI vuông góc CD

Xét tứ giác OAMB có

góc OAM+góc OBM=180 độ

=>OAMB là tứ giác nội tiếp

=>O,A,M,B cùng thuộc 1 đường tròn đường kính OM(1)

Vì ΔOIM vuông tại I

nên I nằm trên đường tròn đường kính OM(2)

Từ (1), (2) suy ra ĐPCM

b: Xét ΔMAC và ΔMDA có

góc MAC=góc MDA

góc AMC chung

=>ΔMAC đồng dạng vơi ΔMDA

=>MA/MD=MC/MA

=>MA^2=MD*MC

20 tháng 5 2017

a) \(\left(C\right)\) có tâm \(I\left(3;-1\right)\) và có bán kính \(R=2\), ta có :

\(IA=\sqrt{\left(3-1\right)^2+\left(-1-3\right)^2}=2\sqrt{5}\)

\(IA>R\), vậy A nằm ngoài (C)

b) \(\Delta_1:3x+4y-15=0;\Delta_2:x-1=0\)

25 tháng 8 2021

Tham khảo!

Thấy ảnh không ạ?

undefined

Not s.p.a.m!

25 tháng 8 2021

Thank you bạn nha

31 tháng 3 2017

T M P I 3

gọi T ;P là 2 tiếp điểm của 2 tiếp tuyến kẻ từ M đến đường tròn (C)

\(\Delta MTP\) cận tại M (t/c tt)\(\Rightarrow MO\) là tia phân giác ;đường cao ...

\(\Rightarrow\widehat{TMO}=\widehat{PMO}=60^0\left(gt\right)\)

\(\Delta TMO\)\(\widehat{MTO}=90^0\left(tt\right)\)\(\Rightarrow\Delta TMO\) là tam giác nửa đều

\(\Rightarrow MO=2TO=2.3=6\)

​vậy tập hợp những điểm M cách đều điểm I(1;2) 1 khoảng cố định=6 là đường tròn tâm I(1;2) và bán kính R=6.

PT duong tron (C') \(\left(x-1\right)^2+\left(y-2\right)^2=36\).

31 tháng 3 2017

nhầm rồi 30 mà viết 60..uổng công quá

NV
29 tháng 3 2023

Ta có: \(OB=OC=R\) ; \(AB=AC\) (t/c hai tiếp tuyến cắt nhau)

\(\Rightarrow OA\) là trung trực của BC

\(\Rightarrow OA\) là phân giác góc \(\widehat{BAC}\) (1)

Mặt khác I thuộc OA \(\Rightarrow IB=IC\Rightarrow\Delta IBC\) cân tại I

\(\Rightarrow\widehat{CBI}=\widehat{BCI}\)

Mà \(\widehat{BCI}=\widehat{ABI}\) (góc nội tiếp và góc tiếp tuyến cùng chắn cung BI)

\(\Rightarrow\widehat{CBI}=\widehat{ABI}\Rightarrow BI\) là phân giác \(\widehat{ABC}\) (2)

(1);(2) \(\Rightarrow I\) là tâm đường tròn nội tiếp tam giác ABC

29 tháng 3 2023

https://hoc24.vn/cau-hoi/.7839714164433

Anh giúp em ạ!