Cho tam giác ABC cân tại A, đường cao AH ke hm vuông góc ab tại m hn vuông góc với...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó; ΔAHB=ΔAHC

=>HB=HC

Do tam giác ABC cân tại A, ta có:

  • AB = AC
  • Góc ∠ABC = ∠ACB
  • AH là đường cao kẻ từ đỉnh A xuống đáy BC
    ⇒ Vì tam giác ABC cân tại A, nên AH cũng là đường trung tuyến và đường phân giác, tức:
  • H là trung điểm của BC

Suy ra:

  • Vì H là trung điểm của BC, nên:

\(B H = H C\)

Vậy: BH = CH (đpcm)

a: Xét ΔBAD và ΔBED có

BA=BE

\(\hat{ABD}=\hat{EBD}\) (BD là phân giác của góc ABE)

BD chung

Do đó: ΔBAD=ΔBED

=>DA=DE

b: ΔBAD=ΔBED

=>\(\hat{BAD}=\hat{BED}\)

=>\(\hat{BED}=90^0\)

=>DE⊥BC

mà AH⊥BC

nên DE//AH

c: Xét ΔMHA và ΔMDK có

MH=MD

\(\hat{MHA}=\hat{MDK}\) (hai góc so le trong, HA//DK)

HA=DK

Do đó: ΔMHA=ΔMDK

=>\(\hat{HMA}=\hat{DMK}\)

\(\hat{HMA}+\hat{AMD}=180^0\) (hai góc kề bù)

nên \(\hat{AMD}+\hat{DMK}=180^0\)

=>A,M,K thẳng hàng

30 tháng 8

Chúng ta sẽ giải từng câu hỏi trong bài toán này.

Câu a) Chứng minh ∆ABD = ∆EBD và AD = ED

  • Điều kiện:
    • ∆ABC vuông tại A (AB < AC).
    • Tia phân giác của góc B cắt AC tại D.
    • Trên cạnh BC lấy điểm E sao cho BE = BA.
    • Vẽ AH BC tại H.
  • Chứng minh:
  1. Xét các tam giác ∆ABD và ∆EBD:
    Vậy, theo Tiêu chuẩn góc-cạnh-góc (Axiom SAS), ta có:
    \(\Delta A B D = \Delta E B D\)
    • Cả hai tam giác ∆ABD và ∆EBD có cạnh chung BD.
    • AB = BE (do đề bài cho BE = BA).
    • Góc ABD = Góc EBD (vì tia BD là tia phân giác của góc ABC, nên hai góc này bằng nhau).
  2. Kết luận AD = ED:
    • Do ∆ABD = ∆EBD (theo chứng minh trên), nên các cạnh tương ứng của hai tam giác này cũng bằng nhau.
    • Vậy, AD = ED.

Câu b) Chứng minh AH // DE

  1. Xét đoạn AH và DE:
    • Từ điều kiện bài toán, chúng ta có điểm H là giao điểm của đường vuông góc AH với cạnh BC, tức là AH ⊥ BC.
    • Tia DE được dựng sao cho DE là một đoạn thẳng trong cùng một mặt phẳng với BC, và điểm D là điểm phân giác của góc B.
  2. Chứng minh AH // DE:
    • Vì ∆ABD = ∆EBD (chứng minh ở câu a) nên các góc tương ứng của hai tam giác này cũng bằng nhau. Đặc biệt, ∠BAD = ∠BED.
    • Ta có AH ⊥ BC và ∠BAD = ∠BED. Do đó, theo tính chất của góc tạo thành giữa đường vuông góc và đoạn thẳng, ta suy ra rằng AH // DE.

Câu c) Chứng minh A, M, K thẳng hàng

  1. Định nghĩa các điểm:
    • Trên tia DE, lấy điểm K sao cho DK = AH.
    • M là trung điểm của DH, tức là:
      \(\text{DM} = \text{MH}\)
  2. Chứng minh A, M, K thẳng hàng:
    • Ta đã biết rằng AH // DE, và từ câu b) đã chứng minh rằng AH và DE song song.
    • M là trung điểm của DH, tức là DM = MH. Đồng thời, ta có DK = AH (theo giả thiết).
    • Vì AH // DE và M là trung điểm của DH, ta có thể sử dụng tính chất của các đường trung tuyến trong tam giác vuông để suy ra rằng các điểm A, M, K nằm trên cùng một đường thẳng.

Kết luận:

  1. a) ∆ABD = ∆EBD và AD = ED.
  2. b) AH // DE.
  3. c) A, M, K thẳng hàng.

a: Xét ΔAHB và ΔAHC có

AB=AC
\(\hat{HAB}=\hat{HAC}\)

AH chung

Do đó: ΔAHB=ΔAHC

=>\(\hat{AHB}=\hat{AHC}\)

\(\hat{AHB}+\hat{AHC}=180^0\) (hai góc kề bù)

nên \(\hat{AHB}=\hat{AHC}=\frac{180^0}{2}=90^0\)

=>AH⊥BC tại H

b: ΔAHB=ΔAHC

=>HB=HC

=>H là trung điểm của BC

Xét ΔABC có

AH,BD là các đường trung tuyến

AH cắt BD tại G

Do đó: G là trọng tâm của ΔABC

=>\(AG=\frac23AH=\frac23\cdot6=4\left(\operatorname{cm}\right)\)

c: Ta có: HK//AC

=>\(\hat{KHB}=\hat{ACB}\) (hai góc đồng vị)

\(\hat{KBH}=\hat{ACB}\) (ΔABC cân tại A)

nên \(\hat{KBH}=\hat{KHB}\)

=>KB=KH

Ta có: HK//AC

=>\(\hat{KHA}=\hat{HAC}\) (hai góc so le trong)

\(\hat{HAC}=\hat{KAH}\) (AH là phân giác của góc BAC)

nên \(\hat{KHA}=\hat{KAH}\)

=>KH=KA

mà KB=KH

nên KA=KB

=>K là trung điểm của AB

Xét ΔABC có

K là trung điểm của AB

G là trọng tâm

Do đó: C,G,K thẳng hàng

26 tháng 8

a) Chứng minh rằng tam giác AHB = tam giác AHC và AH vuông góc với BC

✳️ Dữ kiện:

  • Tam giác ABC cân tại A ⇒ \(A B = A C\)
  • \(A H\) là phân giác ⇒ \(\hat{B \hat{A} H} = \hat{C \hat{A} H}\)

✳️ Xét 2 tam giác \(\triangle A H B\) và \(\triangle A H C\):

So sánh:

  • \(A B = A C\) (do tam giác cân tại A)
  • \(\hat{B \hat{A} H} = \hat{C \hat{A} H}\)(do \(A H\) là phân giác)
  • Cạnh chung: \(A H\)

✅ Suy ra:

\(\triangle A H B = \triangle A H C (\text{c}-\text{g}-\text{c})\)


✳️ Suy ra: \(H B = H C\) và \(\hat{A H B} = \hat{A H C}\)

→ Mà \(H B = H C\), nên \(H\) cách đều \(B\) và \(C\)

⇒ \(A H\) là đường phân giác đồng thời là trung tuyến trong tam giác cân

→ Trong tam giác cân, đường phân giác ứng với đỉnh cân còn là đường cao

✅ Vậy \(A H \bot B C\)


b) Điểm D là trung điểm của AC, BD cắt AH tại G. Biết AH = 6cm. Tính AG

✳️ Dữ kiện:

  • \(D\): trung điểm của \(A C\)
  • \(B D\) cắt \(A H\) tại \(G\)
  • \(\triangle A B C\) cân tại A ⇒ \(A B = A C\)
  • Mà \(D\): trung điểm của \(A C\) ⇒ không đối xứng hoàn toàn, nhưng vẫn đủ điều kiện dùng định lý Menelaus hoặc định lý trọng tâm nếu phù hợp

→ Tuy nhiên, vì:

  • \(D\) là trung điểm \(A C\)
  • \(A B = A C\) ⇒ \(B\) đối diện với cạnh có điểm trung điểm
  • Áp dụng định lý trung tuyến, trong tam giác \(A B C\), khi nối đỉnh \(B\) với trung điểm \(D\) của \(A C\), thì:

\(\text{Giao}\&\text{nbsp};đ\text{i}ể\text{m}\&\text{nbsp};\text{c}ủ\text{a}\&\text{nbsp}; B D \&\text{nbsp};\text{v}ớ\text{i}\&\text{nbsp}; A H \&\text{nbsp};(\text{trong}\&\text{nbsp};\text{tam}\&\text{nbsp};\text{gi} \overset{ˊ}{\text{a}} \text{c}\&\text{nbsp};\text{c} \hat{\text{a}} \text{n}\&\text{nbsp};\text{c} \overset{ˊ}{\text{o}} \&\text{nbsp};\text{AH}\&\text{nbsp};\text{l} \overset{ˋ}{\text{a}} \&\text{nbsp};đườ\text{ng}\&\text{nbsp};\text{cao}) \Rightarrow G \&\text{nbsp};\text{l} \overset{ˋ}{\text{a}} \&\text{nbsp};\text{tr}ọ\text{ng}\&\text{nbsp};\text{t} \hat{\text{a}} \text{m}\&\text{nbsp};\text{c}ủ\text{a}\&\text{nbsp}; \triangle A B C\)

✳️ Vậy \(G\) là trọng tâm của tam giác \(A B C\)

⇒ Trong tam giác, trọng tâm chia đường trung tuyến theo tỉ lệ:

\(A G : G H = 2 : 1\)

→ \(A H = A G + G H = 3 p h \overset{ˋ}{\hat{a}} n\)

→ \(A G = \frac{2}{3} \cdot A H = \frac{2}{3} \cdot 6 = \boxed{4 \&\text{nbsp};\text{cm}}\)


c) Từ điểm H kẻ đường thẳng song song với AC cắt AB tại K. Chứng minh ba điểm C, G, K thẳng hàng

✳️ Dữ kiện:

  • \(H K \parallel A C\)\(K \in A B\)
  • G là giao điểm của \(A H\) và \(B D\)
  • D là trung điểm của \(A C\)

✳️ Ý tưởng:

Ta sẽ sử dụng định lý Talet hoặc đồng dạng tam giác

✳️ Phân tích:

Vì \(H K \parallel A C\), và \(H \in A H\)\(K \in A B\), nên:

\(\triangle H A K sim \triangle C A C \left(\right. đ \overset{ˋ}{\hat{\text{o}}} \text{ng}\&\text{nbsp};\text{d}ạ\text{ng}\&\text{nbsp};\text{do}\&\text{nbsp};\text{g} \overset{ˊ}{\text{o}} \text{c}\&\text{nbsp};-\&\text{nbsp};\text{g} \overset{ˊ}{\text{o}} \text{c} \left.\right)\)

Mặt khác, trong tam giác \(A B C\), ta có:

  • \(D\) là trung điểm của \(A C\)
  • \(B D\) cắt \(A H\) tại \(G\) (đã biết)
  • Kẻ \(H K \parallel A C\), cắt \(A B\) tại \(K\)

→ Xét hình thang \(K H C A\), có \(H K \parallel A C\)

Kết luận quan trọng:

  • Đường thẳng đi qua \(H\) song song với \(A C\) cắt \(A B\) tại \(K\)
  • Khi đó, do cấu trúc cân, trung điểm, trọng tâm → ta có thể chứng minh 3 điểm \(C , G , K\) thẳng hàng bằng định lý Menelaus đảo hoặc dùng tỉ lệ đoạn thẳng trong tam giác

✅ Cách chứng minh gọn:

Trong tam giác cân \(A B C\):

  • \(G\): là trọng tâm
  • \(D\): trung điểm \(A C\)
  • \(B D\) cắt \(A H\) tại \(G\)
  • \(H K \parallel A C\) ⇒ theo định lý giao tuyến phụ\(C K\) cắt \(B D\) tại trọng tâm \(G\)

→ Ba điểm \(C , G , K\) thẳng hàng.


✅ Kết luận:

  • a) \(\triangle A H B = \triangle A H C\), và \(A H \bot B C\)
  • b) \(A G = 4 \&\text{nbsp};\text{cm}\)
  • c) \(C , G , K\) thẳng hàng
12 tháng 6 2017

A B C G H

a) Ta có:

\(\Delta ABC\) cân tại A => Đường cao AH đồng thời cũng là đường trung tuyến

\(\Rightarrow BH=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)

Xét \(\Delta ABH\) vuông tại H, ta có:

\(AH^2+BH^2=AB^2\) ( Định lý Py-ta-go )

\(\Rightarrow AH^2=AB^2-BH^2=5^2-3^2=25-9=16\left(=\left(\pm4\right)^2\right)\)

\(\Rightarrow AH=4\left(cm\right)\) (AH>0)

Vậy BH=3 cm; AH=4 cm

12 tháng 6 2017

Tham khảo hình bài làm đầy đủ :

Câu hỏi của Nguyễn Hoàng Bảo Nhi - Toán lớp 0 | Học trực tuyến

Chúc bn học tốt!

3 tháng 5 2021

Em mới lớp 6 còn ngu nên ko biếtttttttttttttttt

3 tháng 5 2021

a, theo pytago ta có:

AB2+AC2=BC2 <=> AC=\(\sqrt{10^2-6^2}\)=8 (cm)

so sánh: BAC>ABC>ACB vì BC>AC>AB

b, vì A là trung điểm BD nên CA là trung tuyến của tam giác DBC

mà CA\(\perp\)BD nên CA là đường cao của tam giác DBC

=> CA vừa là trung tuyến vừa là đường cao của tam giác DBC nên DBC cân ở C

3 tháng 3 2018

a)\(\Delta ABH\) vuông tại H có:

BH2 =AB2 -AH2 =132 -122 =25( ĐL Pytago)

=> BH=5 cm

BC=BH+HC=5+16=21 cm

\(\Delta AHC\) vuông tại H có:

AH2 + HC2 =AC2 ( đl Pytago)

=> AC2 =122 + 162 =20 cm

b) \(\Delta AHB\) vuông tại H có: AB2 = AH2 +BH2 ( ĐL  Pytago)

=> BH2 =AB2 - AH2 =132 - 122 =25

=> BH=5 cm

BC= BH+HC=5+16=21 cm

\(\Delta AHC\) vuông tại H có: AC2 = AH2 +HC2 ( đL Pytago)

=> AC2 = 122 + 162 =400

=> AC= 20 cm 

10 tháng 6 2017

a/ Xét tam giác BEM và tam giác CFM có:

góc BEM = góc CFM = 900 (GT)

BM = MC (AM là trung tuyến t/g ABC)

góc B = góc C (t/g ABC cân)

=> tam giác BEM = tam giác CFM

b/ Ta có: AB = AC (t/g ABC cân)

BE = CF (t/g BEM = t/g CFM)

=> AE = AF

Xét hai tam giác vuông AEM và AFM có:

AE = AF (cmt)

AM: cạnh chung

=> tam giác AEM = tam giác AFM

=> ME = MF

Ta có: AE = AF; ME = MF

=> AM là trung trực của EF

c/ Xét hai tam giác vuông ABD và ACD có:

AB = AC (GT)

AD: cạnh chung

=> tam giác ABD = tam giác ACD

=> BD = CD

Ta có: AB = AC; BD = CD

=> AD là trung trực của EF

Ta có: AM là trung trực của EF

AD là trung trực của EF

=> AM trùng AD

Vậy A;M;D thẳng hàng.

---> đpcm.

10 tháng 6 2017

Ta có hình vẽ:

A B C E F M D