Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMNP vuông tại M và ΔHIP vuông tại H có
góc P chung
=>ΔMNP đồng dạng với ΔHIP
b: IN/IP=MN/MP=3/4
=>IN/3=IP/4=(IN+IP)/(3+4)=5/7
=>IN=15/7cm; IP=20/7cm
IH//MN
=>IH/MN=PI/PN
=>IH/3=20/7:5=4/7
=>IH=12/7cm

Lời giải:
a) Theo tính chất tia phân giác ta có:
$\frac{EM}{EN}=\frac{DM}{DN}=\frac{2DM}{NP}(1)$
$\frac{FM}{FP}=\frac{DM}{DP}=\frac{2DM}{NP}(2)$
Từ $(1);(2)\Rightarrow \frac{EM}{EN}=\frac{FM}{FP}$
Theo định lý Talet đảo suy ra $EF\parallel NP$
b)
$G$ là điểm nào bạn?

tự vẽ hình nhé
a, Xét \(\Delta\) MNP và \(\Delta\) HNM
< MNP chung
<NMP=<NHM(=90\(^0\) )
b,=> \(\dfrac{MN}{HN}=\dfrac{NP}{MN}\)
=> \(MN^2=NP\cdot NH\)
c, xét \(\Delta\) NMP vg tại M, áp dụng định lí Py - ta - go trong tam giác vg có
\(MN^2+MP^2=NP^2\)
=> \(NP^2=144\Rightarrow NP=12cm\)
Ta có \(MN^2=NH\cdot NP\)
Thay số:\(7,2^2=NH\cdot12\Rightarrow NH=4,32cm\)
bấm vào chữ "đúng" í
a: Xét ΔMAB và ΔMNP có
\(\frac{MA}{MN}=\frac{MB}{MP}\left(=\frac12\right)\)
\(\hat{AMB}\) chung
Do đó: ΔMAB~ΔMNP
b: Xét ΔMNP có
A,D lần lượt là trung điểm của NM,NP
=>AD là đường trung bình của ΔMNP
=>AD//MP và \(AD=\frac{MP}{2}=MB\)
Xét tứ giác MADB có
AD//MB
AD=MB
Do đó: MADB là hình bình hành
=>MD cắt AB tại trung điểm của mỗi đường
=>C là trung điểm chung của MD và AB
C là trung điểm của AB
=>CA=CB