Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBKH vuông tại K và ΔBDC vuông tại D có
góc DBC chung
Do đó: ΔBKH đồng dạng vớiΔBDC
Suy ra: BK/BD=BH/BC
hay \(BD\cdot BH=BK\cdot BC\)
Xét ΔCKH vuông tại K và ΔCEB vuông tại E có
góc KCH chung
Do đó: ΔCKH đồng dạng với ΔCEB
Suy ra: CK/CE=CH/CB
hay \(CH\cdot CE=CK\cdot CB\)
=>\(BH\cdot BD+CH\cdot CE=BC^2\)
b: Xét ΔADB vuông tạiD và ΔAEC vuông tại E có
góc DAB chung
Do đó: ΔADB\(\sim\)ΔAEC
Suy ra: AD/AE=AB/AC
hay AD/AB=AE/AC
Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
Do đó: ΔADE đồng dạng với ΔABC

B C A E D F H
Bài làm:
a) Δ EHB ~ Δ DHC (g.g) vì:
+ \(\widehat{EHB}=\widehat{DHC}\) (đối đỉnh)
+ \(\widehat{BEH}=\widehat{CDH}=90^0\)
=> đpcm
b) Theo phần a, 2 tam giác đồng dạng
=> \(\frac{HE}{HB}=\frac{HD}{HC}\)
Δ HED ~ Δ HBC (c.g.c) vì:
+ \(\frac{HE}{HB}=\frac{HD}{HC}\) (chứng minh trên)
+ \(\widehat{EHD}=\widehat{BHC}\) (đối đỉnh)
=> đpcm
c) Δ ABD ~ Δ ACE (g.g) vì:
+ \(\widehat{ADB}=\widehat{AEC}=90^0\)
+ \(\widehat{A}\) chung
=> \(\frac{AD}{AE}=\frac{AB}{AC}\)
Δ ADE ~ Δ ABC (c.g.c) vì:
+ \(\frac{AD}{AE}=\frac{AB}{AC}\) (chứng minh trên)
+ \(\widehat{A}\) chung
=> đpcm
d) Gọi F là giao của AH với BC
Δ BHF ~ Δ BCD (g.g) vì:
+ \(\widehat{BFH}=\widehat{BDC}=90^0\)
+ \(\widehat{B}\) chung
=> \(\frac{BF}{BH}=\frac{BD}{BC}\Rightarrow BD.BH=BF.BC\left(1\right)\)
Tương tự ta chứng minh được:
\(CH.CE=FC.BC\left(2\right)\)
Cộng vế (1) và (2) lại ta được:
\(BD.BH+CH.CE=\left(BF+FC\right)BC=BC.BC=BC^2\)
=> đpcm

Kẻ \(HM\perp BC\)
Xét \(\Delta BHM\) và \(\Delta BCD\) ta có:
\(\widehat{BMH}=\widehat{BDC}=90^o\)
\(\widehat{CBD}\) chung
\(\Rightarrow\Delta BHM\sim\Delta BCD\left(g.g\right)\)
\(\Rightarrow\dfrac{BM}{BD}=\dfrac{BH}{BC}\Rightarrow BM\times BC=BH\times BD\left(1\right)\)
Xét \(\Delta CMH\) và \(\Delta CEB\) ta có:
\(\widehat{BCE}\) chung
\(\widehat{CMH}=\widehat{CEB}=90^o\)
\(\Rightarrow\Delta CMH\sim\Delta CEB\left(g.g\right)\)
\(\Rightarrow\dfrac{CH}{CB}=\dfrac{CM}{CE}\Rightarrow CM\times CB=CH\times CE\left(2\right)\)
Cộng 2 vế của (1)(2) lại với nhau ta đc:
\(BM.BC+CM.CB=BH.BD+CH.CE\)
\(\Leftrightarrow BC\left(BM+CM\right)=BH.BD+CH.CE\)
\(\Rightarrow BC^2=BH.BD+CH.CE\left(đcpcm\right)\)
Vậy..............
a: Sửa đề: Chứng minh ΔBHK~ΔBCD
Xét ΔBKH vuông tại K và ΔBDC vuông tại D có
\(\widehat{KBH}\) chung
Do đó: ΔBKH~ΔBDC
b: Xét ΔCKH vuông tại K và ΔCEB vuông tại E có
\(\widehat{KCH}\) chung
Do đó: ΔCKH~ΔCEB
=>\(\dfrac{CK}{CE}=\dfrac{CH}{CB}\)
=>\(CH\cdot CE=CK\cdot CB\)
c: ΔBKH~ΔBDC
=>\(\dfrac{BK}{BD}=\dfrac{BH}{BC}\)
=>\(BH\cdot BD=BK\cdot BC\)
\(BH\cdot BD+CH\cdot CE=BK\cdot BC+CK\cdot BC\)
\(=BC\left(BK+CK\right)=BC\cdot BC=BC^2\)
BCK KO PHẢI TAM GIÁC