K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Họ và tên thí sinh:…………………………………………………………………Số báo danh:………..…… Phòng thi số:……………Bài 1: (4,5 điểm)a) Trong ba số a, b, c có một số dương, một số âm và một số bằng 0, ngoài ra còn biết:\(|a|=b^2\left(b-c\right)\) . Hỏi số nào dương, số nào âm, số nào bằng 0 ?b) Tìm hai số x và y sao cho \(x+y=xy=x:y\left(y\ne0\right)\)c) Cho p là số nguyên tố. Tìm tất cả...
Đọc tiếp

Họ và tên thí sinh:…………………………………………………………………Số báo danh:………..…… Phòng thi số:……………

Bài 1: (4,5 điểm)
a) Trong ba số a, b, c có một số dương, một số âm và một số bằng 0, ngoài ra còn biết:
\(|a|=b^2\left(b-c\right)\) . Hỏi số nào dương, số nào âm, số nào bằng 0 ?
b) Tìm hai số x và y sao cho \(x+y=xy=x:y\left(y\ne0\right)\)

c) Cho p là số nguyên tố. Tìm tất cả các số nguyên a thỏa mãn: \(a^2+a-p=0\)
Bài 2: (4,5 điểm)

a) Cho đa thức \(F\left(x\right)=ã^3+bx^3+2014x+1\),biết \(F\left(2015\right)=2\)Hãy tính \(F\left(-2015\right)\)

b) Tìm x, biết: \(\left(x-5\right)^{x+1}-\left(x-5\right)^{x+13}=0\)

c, Không dùng máy tính, hãy tính giá trị của biểu thức:

\(S=\frac{\frac{3}{13}-0,6+\frac{3}{7}+0,75}{\frac{11}{7}-2,2+\frac{11}{13}+2,75}\)

Bài 3: (4.0 điểm)

a) Tìm giá trị nhỏ nhất của biểu thức:

\(A=|x-2|+|2x-3|+|3x-4|\)

b) Tìm hai số khác 0 biết tổng, hiệu, tích của hai số đó tỉ lệ với \(3;\frac{1}{3};\frac{200}{3}\)

Bài 4: (4.0 điểm)
Cho tam giác ABC vuông ở A có AB = 6cm, AC = 8cm và đường cao AH. Tia phân
giác của góc BAH cắt BH tại D. Trên tia CA lấy điểm K sao cho CK = BC.
a) Chứng minh: KB // AD.
b) Chứng minh: \(KD\perp BC.\)
c) Tính độ dài KB.

Bài 5: (3.0 điểm)
Cho tam giác ABC có góc A tù. Kẽ\(AD\perp AB\)  và AD = AB (tia AD nằm giữa hai tiaAB và AC). Kẽ \(AE\perp AC\) và AE = AC (tia AE nằm giữa hai tia AB và AC). Gọi M làtrung điểm của BC. Chứng minh rằng: \(AM\perp DE\)

11
11 tháng 6 2019

#)Giải :

Câu 1 :

a) 

- Nếu a = 0 => b = 0 hoặc b - c = 0 => b = c hoặc b = c ( đều vô lí ) => a khác 0

- Nếu b = 0 => a = 0 ( vô lí ) => b khác 0

=> c = 0

=> |a| = b2.b = b3

=> b3 ≥ 0 

=> b là số nguyên dương 

=> a là số nguyên âm

Vậy a là số nguyên dương, b là số nguyên âm và c = 0

11 tháng 6 2019

#)Giải :

Câu 1 :

b) x.y = x : y 

=> y= x : x = 1

=> y = -1 hoặc 1 

+) y = 1 => x + 1 = x ( vô lí )

+) y = -1 => x - 1 = -x

=> x = 1/2

Vậy y = -1 ; x = 1/2

17 tháng 7 2021

a) \(A\left(x\right)=-1+5x^6-6x^2-5-9x^6+4x^4-3x^2\)

\(\Rightarrow A\left(x\right)=\left(-1-5\right)+\left(5x^6-9x^6\right)-\left(6x^2+3x^2\right)+4x^4\)

\(\Rightarrow A\left(x\right)=-6-4x^6-9x^2+4x^4\)

\(\Rightarrow A\left(x\right)=-4x^6+4x^4-9x^2-6\)

\(B\left(x\right)=2-5x^2+3x^4-4x^2+3x+x^4-4x^6-7x\)

\(\Rightarrow B\left(x\right)=-4x^6+\left(3x^4+x^4\right)-\left(5x^2+4x^2\right)+\left(3x-7x\right)+2\)

\(\Rightarrow B\left(x\right)=-4x^6+4x^4-9x^2-4x+2\)

b) Đa thức A(x) có bậc là 6, hệ số cao nhất là -4, hệ số tự do là -6.

Đa thức B(x) có bậc là 6, hệ số cao nhất là -4, hệ số tự do là 2.

17 tháng 7 2021

c) \(C\left(x\right)=A\left(x\right)-B\left(x\right)=\left(-4x^6+4x^4-9x^2-6\right)-\left(-4x^6+4x^4-9x^2-4x+2\right)\)

\(\Rightarrow C\left(x\right)=-4x^6+4x^4-9x^2-6+4x^6-4x^4+9x^2-4x+2\)

\(\Rightarrow C\left(x\right)=\left(-4x^6+4x^6\right)+\left(4x^4-4x^4\right)+\left(-9x^2+9x^2\right)-4x+\left(-6+2\right)\)

\(\Rightarrow C\left(x\right)=-4x-4\)

Xét \(C\left(x\right)=0\) \(\Rightarrow-4x-4=0\) \(\Rightarrow-4x=4\) \(\Rightarrow x=-1\)

Vậy \(C\left(x\right)=-4x-4\) có 1 nghiệm là  \(x=-1\)

28 tháng 4 2018

Hai câu này là hai câu tách riêng hay gộp chung?

28 tháng 4 2018
MẤY BẠN CÓ LÒNG TỐT THÌ GIÚP MIK NHA
4 tháng 5 2019

a) A(x) = \(x^2-5x^3+3x+\)\(2x^3\)\(x^2+\left(-5x^3+2x^3\right)+3x\)=\(x^2-3x^3+3x\)

=\(-3x^3+x^2+3x\)

B(x)= \(-x^2+7+3x^3-x-5\)\(-x^2+2+3x^3-x\)

=\(3x^3-x^2-x+2\)

b) A(x) - B(x) = \(-3x^3+x^2+3x\)\(3x^3+x^2+x-2\)

=\(\left(-3x^3-3x^3\right)+\left(x^2+x^2\right)+\left(3x+x\right)-2\)\(-6x^3+2x^2+4x-2\)

vậy A(x) - B(x) =\(-6x^3+2x^2+4x-2\)

c) C(x) = A(x) + B(x) =\(-3x^3+x^2+3x\)\(3x^3-x^2-x+2\)= 2x+2

ta có: C(x) = 0 <=> 2x+2=0

      => 2x=-2

=> x=-1

vậy x=-1 là nghiệm của đa thức C(x)

4 tháng 5 2019

a) A(x)= -3x^3 + x^2 + 3x

B(x)= 3x^3 - x^2 - x +2

b) A(x) - B(x) = - 3x^3 + x^2 + 3x - (3x^3 - x^2 - x + 2)

= -3x^3 + x^2 + 3x - 3x^3 + x^2 + x - 2

= -6x^3 + 2x^2 + 4x -2 

c) C(x) = A(x) + B(x) = - 3x^3 + x^2 + 3x + 3x^3 - x^2 - x +2= 2x + 2

C(x) có nghiệm => C(x)=0 => 2x + 2 = 0 => 2x=-2 => x=-1

Vậy x=-1 là nghiệm của C(x)

1 tháng 4 2019

\(f\left(x\right)-g\left(x\right)=5x^2-2x+5-\left(5x^2-6x-\frac{1}{3}\right)\)

\(5x^2-2x+5-5x^2+6x+\frac{1}{3}\)

=\(4x+\frac{16}{3}\)

2 tháng 4 2019

sao làm csw mỗi câu z bạn

27 tháng 9 2019

a)\(\left(\frac{4}{5}\right)^{2x+7}=\left(\frac{4}{5}\right)^4\)

=> 2x + 7 = 4 

     2x        = 4 - 7 

     2x        = -3

       x        = -3 : 2

       x         = -1,5

   Vậy x = -1,5

15 tháng 1 2020

bài 1 : 

a, A = 3|2x - 1| - 5 = 0

có 3|2x - 1| >

=> A > -5

xét A = -5 khi 

|2x - 1| = 0

=> 2x - 1 = 0

=> 2x = 1

=> x = 1/2

vậy Min A = -5 khi x = 1/2

b, c, d, làm tương tự

17 tháng 1 2020

Bài 1:

\(a)A=3|2x-1|-5\)

Vì \(|2x-1|\ge0\)\(\forall x\)

\(\Rightarrow3|2x-1|\ge0\) \(\forall x\)

\(\Rightarrow3|2x-1|-5\ge-5\) \(\forall x\)

Dấu "=" xảy ra:

\(\Leftrightarrow2x-1=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy \(Min_A=-5\Leftrightarrow x=\frac{1}{2}\)

\(b)x^2+3|y-2|-1\)

Vì \(\hept{\begin{cases}x^2\ge0\forall x\\3|y-2|\ge0\forall y\end{cases}}\)

\(\Rightarrow x^2+3|y-2|-1\ge-1\) \(\forall x,y\)

Dấu '=' xảy ra:

\(\Leftrightarrow\hept{\begin{cases}x^2=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)

Vậy \(Min_B=-1\Leftrightarrow x=0,y=2\)

\(c)\left(2x^2+1\right)^4-3\)

Vì \(\left(2x^2+1\right)^4\ge0\)\(\forall x\)

\(\Rightarrow\left(2x^2+1\right)^4-3\ge-3\) \(\forall x\)

Dấu "=" xảy ra:

\(\Leftrightarrow2x^2+1=0\)

\(\Leftrightarrow2x^2=-1\)

\(\Leftrightarrow x^2=-\frac{1}{2}\left(voli\right)\)

Vậy không tìm được gt x

\(d)D=|x-\frac{1}{2}|+\left(y+2\right)^2+11\)

Vì \(\hept{\begin{cases}|x-\frac{1}{2}|\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}}\)

\(\Rightarrow|x-\frac{1}{2}|+\left(y+2\right)^2+11\ge11\) \(\forall x,y\)

Dấu '=' xảy ra:

\(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-2\end{cases}}\)

Vậy \(Min_D=11\Leftrightarrow x=\frac{1}{2},y=-2\)

17 tháng 1 2020

Bài 2:

\(a)A=10-5|x-2|\)

Vì \(|x-2|\ge0\)\(\forall x\)

\(\Rightarrow5|x-2|\ge0\)\(\forall x\)

\(\Rightarrow\)\(10-5|x-2|\le10\) \(\forall x\)

Dấu "=" xảy ra:
\(\Leftrightarrow x-2=0\)

\(\Leftrightarrow x=2\)

Vậy \(Max_A=10\Leftrightarrow x=2\)

\(b)B=5-|2x-1|^2\)

Vì \(|2x-1|^2\ge0\)\(\forall x\)

\(\Rightarrow5-|2x-1|^2\le5\) \(\forall x\)

Dấu "=" xảy ra:

\(\Leftrightarrow2x-1=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy \(Max_B=5\Leftrightarrow x=\frac{1}{2}\)

\(c)C=\frac{1}{|x-2|+3}\)

Vì \(|x-2|\ge0\)\(\forall x\)

\(\Rightarrow|x-2|+3\ge3\) \(\forall x\)

\(\Rightarrow\frac{1}{|x-2|+3}\le\frac{1}{3}\) \(\forall x\)

Dấu "=" xảy ra:

\(\Leftrightarrow x-2=0\)

\(\Leftrightarrow x=2\)

Vậy \(Max_C=\frac{1}{3}\Leftrightarrow x=2\)