
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(f_{\left(x\right)}-g_{\left(x\right)}=2x^5+x^4+1x^2+x+1-\left(2x^5+x^4-x^2+1\right)\)
\(=2x^5+x^4+1x^2+x+1-2x^5-x^4+x^2-1\)
\(=\left(2x^5-2x^5\right)+\left(x^4-x^4\right)+\left(1x^2+x^2\right)+x+\left(1-1\right)\)
\(=2x^2+x\)
+, Đặt \(2x^2+x=0\)
\(\Leftrightarrow x.2x=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x=0\end{cases}}\Leftrightarrow x=0\)

a) Đặt F(x)=0
⇔\(3x^2-6x+3x^3=0\)
\(\Leftrightarrow3x^3+3x^2-6x=0\)
\(\Leftrightarrow3x\left(x^2+x-2\right)=0\)
\(\Leftrightarrow3x\left(x^2+2x-x-2\right)=0\)
mà 3>0
nên \(x\left[x\left(x+2\right)-\left(x+2\right)\right]=0\)
\(\Leftrightarrow x\left(x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=1\end{matrix}\right.\)
Vậy: Sf(x)={0;-2;1}(1)
c) Thay x=0 vào đa thức g(x), ta được:
\(g\left(0\right)=-9+7\cdot0^4+2\cdot0^2+2\cdot0^3\)
\(=-9+0+0+0=-9\)
mà -9<0 nên x=0 không là nghiệm của đa thức g(x)(2)
Từ (1) và (2) suy ra x=0 là nghiệm của đa thức f(x) nhưng không là nghiệm của đa thức g(x)

a)Vì T(x)=P(x)+Q(x)
=>T(x)=(-2x2-5x+1)+(-2x2+x-5)
=>T(x)=-2x2-5x+1-2x2+x-5
=>T(x)=(-2x2-2x2)+(-5x+x)+(1-5)=-4x2-4x-4
b)Xét T(x)=-4x2-4x-4=0
=>-(4x2+4x+4)=0
=>4x2+4x+4=0
=>4x2+2x+2x+1+3=0
=>2x(2x+1)+(2x+1)+3=0
=>(2x+1)(2x+1)+3=0
=>(2x+1)2+3=0
Vì (2x+1)2 > 0 với mọi x
=>(2x+1)2+3 > 3 > 0 với mọi x
=>T(x) vô nghiệm

\(x^2-3x-4=0\)
\(< =>x^2+x-4x-4=0\)
\(< =>x\left(x+1\right)-4\left(x+1\right)=0\)
\(< =>\left(x-4\right)\left(x+1\right)=0\)
\(< =>\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)
\(2x^3-x^2-2x+1=0\)
\(< =>x^2\left(2x-1\right)-\left(2x-1\right)=0\)
\(< =>\left(x^2-1\right)\left(2x-1\right)=0\)
\(< =>\left(x-1\right)\left(x+1\right)\left(2x+1\right)=0\)
\(< =>\hept{\begin{cases}x=1\\x=-1\\x=-\frac{1}{2}\end{cases}}\)

a. g(x) - h(x) = -5x4 - x5 + 2x2 - 2x3 - 1/4 + x5 + 2x3 + 3x4 - 7/4x + 2x4
g(x) - h(x) = (-5x4 + 3x4 + 2x4) + (- x5 + x5) + 2x2 + (- 2x3 + 2x3) - 1/4 - 7/4x
g(x) - h(x) = 2x2 - 1/4 - 7/4x
b.Ta có g(x) - h(x) = 0 khi 2x2 - 1/4 - 7/4x = 0
⇒ 2x2 - 7/4x = 1/4
⇒ x(2x - 7/4) = 1/4
⇒ x = 1/4
hoặc 2x - 7/4 = 0 ⇒ 2x = 7/4 ⇒ x = 7/8
Vậy nghiệm của đa thức g(x) - h(x) = 1/4 hoặc 7/8

a) Đặt f(x) = 0, ta có:
f(x) = 2x2 - x = 0
=> x(2x - 1) = 0
\(\Rightarrow\left[{}\begin{matrix}x=0\\2x-1=0\Rightarrow2x=1\Rightarrow x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy nghiệm của f(x) là x = 0 hoặc \(x=\dfrac{1}{2}\)
b) f(x) + g(x) = (2x2 - x) + (mx2 + 2mx + 1)
= 2x2 - x + mx2 + 2mx + 1
= x(2x - 1) + x(mx + 2m) + 1
Thay x = 2 vào đa thức f(x) + g(x), ta có:
f(2) + g(2) = 2(2 . 2 - 1) + 2(2m + 2m) + 1
= 2 . 5 + 2 . 4m + 1
= 10 + 8m + 1
= 11 + 8m
Đặt f(2) + g(2) = 0, ta có:
f(2) + g(2) = 11 + 8m = 0
=> 8m = -11
\(\Rightarrow m=-\dfrac{11}{8}\)
Vậy \(m=-\dfrac{11}{8}\)
Vậy, nghiệm của đa thức \(G \left(\right. x \left.\right) = x^{2} - 2 x + 1\) là \(x = 1\).
\(G\left(x\right)=x^2-2x+1=0\)
\(\left(x^2-x\right)-\left(x-1\right)=0\)
\(x\left(x-1\right)-\left(x-1\right)=0\)
\(\left(x-1\right)\left(x-1\right)=0\)
\(\left(x-1\right)^2=0\)
\(x-1=0\)
\(x=1\)
Vậy nghiệm của đa thức \(G\left(x\right)=x^2-2x+1\) là \(x=1\)