cho tam giác ABC vuông tại A, đường cao AH biết AB=21cm,AC=28cm,BC =35,AH=16.8...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: HE\(\perp\)AB tại E, HD\(\perp\)AC tại D

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HB=\sqrt{21^2-16,8^2}=12,6\left(cm\right)\)

Ta có: HB+HC=BC

=>HC=BC-HC=35-12,6=22,4(cm)

Xét ΔHAB vuông tại H có HE là đường cao

nên \(HE\cdot AB=HA\cdot HB\)

=>\(HE=\dfrac{HA\cdot HB}{AB}=\dfrac{12,6\cdot16,8}{21}=10,08\left(cm\right)\)

ΔAEH vuông tại E

=>\(EA^2+EH^2=AH^2\)

=>\(EA=\sqrt{AH^2-HE^2}=\sqrt{16,8^2-10,08^2}=13,44\left(cm\right)\)

Xét tứ giác AEHD có \(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\)

nên AEHD là hình chữ nhật

=>AD=HE=10,08(cm)

ΔAED vuông tại A

=>\(S_{AED}=\dfrac{1}{2}\cdot AD\cdot AE=\dfrac{1}{2}\cdot13,44\cdot10,08=67,7376\left(cm^2\right)\)

19 tháng 3 2022

\(S_{ABC}=\dfrac{AB.AC}{2}=\dfrac{21.28}{2}=294\left(cm^2\right)\)

Ta có:\(S_{ABC}=\dfrac{AB.AC}{2}\) mà ta lại có: \(S_{ABC}=\dfrac{AH.BC}{2}\)

\(\Rightarrow\dfrac{AB.AC}{2}=\dfrac{AH.BC}{2}\Rightarrow AB.AC=AH.BC\left(đpcm\right)\)

26 tháng 5 2022

hello thì ra cũng bên hoidap247

a:

BC=35cm 

\(AH=\dfrac{AB\cdot AC}{BC}=16.8\left(cm\right)\)

b: \(AE=\dfrac{AH^2}{AC}=\dfrac{16.8^2}{28}=10.08\left(cm\right)\)

\(AD=\dfrac{AH^2}{AB}=\dfrac{16.8^2}{21}=13.44\left(cm\right)\)

Do đó: \(S_{AED}=\dfrac{AD\cdot AE}{2}=\dfrac{13.44\cdot10.08}{2}=67.7376\left(cm^2\right)\)

a: ΔABC vuông tại A

=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot21\cdot28=294\left(cm^2\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\)

mà \(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\)

nên \(AH\cdot BC=AB\cdot AC\)

b: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=21^2+28^2=1225\)

=>\(BC=\sqrt{1225}=35\left(cm\right)\)

Xét ΔABC có AD là phân giác

nên \(\dfrac{DB}{AB}=\dfrac{DC}{AC}\)

=>\(\dfrac{DB}{15}=\dfrac{DC}{20}\)

=>\(\dfrac{DB}{3}=\dfrac{DC}{4}\)

 mà DB+DC=BC=35cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DB}{3}=\dfrac{DC}{4}=\dfrac{DB+DC}{3+4}=\dfrac{35}{7}=5\)

=>\(DB=5\cdot3=15\left(cm\right);DC=4\cdot5=20\left(cm\right)\)

 

19 tháng 3 2022

undefinedhình vẽ

19 tháng 3 2022

undefinedcâu a)

6 tháng 4 2023

Xét ΔABC vuông tại A, áp dụng định lí py-ta-go ta có:

\(BC^2=AB^2+AC^2\)

         \(=21^2+28^2\)

         \(=1225\)

->\(BC=\sqrt{1225}=35\left(cm\right)\)

Xét ΔABC có AD là tia phân giác ta có:

\(\dfrac{AB}{BD}=\dfrac{AC}{CD}=\dfrac{AB+AC}{BC}hay\dfrac{21}{BD}=\dfrac{28}{CD}=\dfrac{21+28}{35}=\dfrac{7}{5}\)

\(BD=\dfrac{21.5}{7}=15\left(cm\right)\)

\(CD=\dfrac{28.5}{7}=20\left(cm\right)\)

 

28 tháng 3 2017

a) Xét tam giác HBA và tam giác ABC có 

góc H = góc A =900

góc B chung

=> tam giác HBA = tam giác ABC (g,g)

tam giác ABC có 

góc A = 900

áp dụng định lí pytago vào tam giác vuông ABC ta có 

BC2=AB2+AC2

BC2= 212+282

BC2= 441+784

BC2=1225

=>BC=35 (cm) 

Vì tam giác HBA ~ tam giác ABC (cmt)

\(\frac{AH}{AC}=\frac{AB}{CB}=>AH=\frac{AB.CA}{CB}=\frac{21.28}{35}=16.8\left(cm\right)\)

                                   chúc bn học tốt

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/AB

=>BA^2=BH*BC

b: \(AB=\sqrt{9\cdot25}=15\left(cm\right)\)

AC=căn 16*25=20(cm)

S=15*20/2=150cm2

c: AD/DC=HA/HC=12/16=3/4