
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Cái này phải bạn tự biểu diễn trên trục số cho dễ hiểu nhé:
Xét TH1: \(x\le-5\) thì:
\(-x-5+3\left(2-x\right)=x+4\Leftrightarrow-5x=3\)
\(\Leftrightarrow x=\dfrac{-5}{3}>-5\left(loại\right)\)
Xét TH2:\(-5\le x\le2\) thì
\(x+5+3\left(2-x\right)=x-4\Leftrightarrow-3x=-15\)
\(\Leftrightarrow x=5>2\left(loại\right)\)
Xét TH3: \(x\ge2\) thì
\(x+5+3\left(x-2\right)=x+4\Leftrightarrow3x=5\)
\(x=\dfrac{5}{3}< 2\left(loại\right)\)
Vậy pt vô nghiệm
\(\left|x+5\right|+3\left|x-2\right|=x+4\\ < =>\left[{}\begin{matrix}x+5+3\left(x-2\right)=x+4\\x+5+3\left(x-2\right)=-x-4\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x+5+3x-6=x+4\\x+5+3x-6=-x-4\end{matrix}\right.\\ < =>\left[{}\begin{matrix}3x=5\\5x=-3\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{3}{5}\end{matrix}\right.\)
vậy ...

dài lắm nên mình làm tắt
1) (x - 5)^2 + (x + 3)^2 = 2(x - 4)(x + 4) - 5x + 7
<=> x^2 - 10x + 25 + x^2 + 6x + 9 = 2x^2 + 8x - 8x - 32 - 5x + 7
<=> 2x^2 - 4x + 34 = 2x^2 - 5x - 25
<=> -4x + 34 = -5x - 25
<=> x + 34 = -25
<=> x = -25 - 34
<=> x = - 59
2) (x + 3)(x - 2) - 2(x + 1)^2 = (x - 3)^2 - 2x^2 + 4x
<=> x^2 - 2x + 3x - 6 - 2x^2 - 4x - 2 = x^2 - 6x + 9 - 2x^2 + 4x
<=> -x^2 - 3x - 8 = -x^2 - 2x + 9
<=> -3x - 8 = -2x + 9
<=> -x - 8 = 9
<=> -x = 9 + 8
<=> x = -17
3) (x + 1)^3 - (x + 2)(x - 4) = (x - 2)(x^2 + 2x + 4) + 2x^2
<=> x^3 + 2x^3 + x + x^2 + 2x + 1 - x^2 + 4x - 2x + 8 = x^3 + 2x^2 + 4x - 2x^2 - 4x - 8 + 2x^2
<=> 2x^2 + 5x + 9 = 2x^2 - 8
<=> 5x + 9 = -8
<=> 5x = -8 - 9
<=> 5x = -17
<=> x = -17/5
4) (x - 2)^3 + (x - 5)(x + 5) = x(x^2 - 5x) - 7x + 3
<=> x^3 - 4x^2 + 4x - 2x^2 + 8x - 8 + x^2 - 5^2 = x^3 - 5x^2 - 7x + 3
<=> 12x - 33 = -7x + 3
<=> 19x - 33 = 3
<=> 19x = 3 + 33
<=> 19x = 36
<=> x = 36/19
5) (x + 4)(x^2 - 4x + 16) - x(x - 4)^2 = 8(x - 3)(x + 3)
<=> x^3 - 4x^2 + 16x + 4x^2 - 16x + 64 - x^3 + 8x^2 - 16x = 8x^2 - 72
<=> -16x + 64 = -72
<=> -16x = -72 - 64
<=> -16x = -136
<=> x = 136/16 = 17/2
6) 4(x - 1)(x + 2) - 5(x + 7) = (2x + 3)^2 - 5x + 3
<=> 4x^2 + 8x - 4x - 8 - 5x - 35 = 4x^2 + 12x + 9 - 5x + 3
<=> -x - 43 = 7x + 12
<=> -8x - 43 = 12
<=> -8x = 12 + 43
<=> -8x = 55
<=> x = -55/8
7) (x - 1)(x^2 + x + 1) + 3(x - 2)^2 = x(x^2 + 3x - 1)
<=> x^3 + x^2 + x - x^2 - x - 1 + 3x^2 - 12x + 12 = x^3 + 3x^2 - x
<=> 3x^2 - 12x + 11 = 3x^2 - x
<=> -12x + 11 = -x
<=> 11 = -x + 12x
<=> 11 = 11x
<=> x = 1
8) (x + 5)(x - 5) - (x + 3)(x^2 - 3x + 9) = 5 - x(x^2 - x - 2)
<=> x^2 - 25 - x^3 + 3x^2 - 9 - 3x^2 + 9x - 27 = 5 - x^3 + x^2 + 2x
<=> -52 - x^3 = 5 - x^3 + 2x
<=> -52 = 5x + 2x
<=> -5x - 2x = 52
<=> -7x = 52
<=> x = -52/7
9) (x + 2)^2 - 2(x + 3)(x - 4) = 5 - x(x - 3)
<=> x^2 + 4x + 4 - 2x^2 + 8x - 6x + 24 = 5 - x^3 + 3x
<=> 6x + 28 = 5 + 3x
<=> 6x + 28 - 3x = 5
<=> 3x + 28 = 5
<=> 3x = 5 - 28
<=> 3x = -23
<=> x = -23/3
10) (x + 7)(x - 7) - (x + 2)^2 = 5(x - 2) + (x - 7)
<=> x^2 - 49 - x^2 - 4x - 4 = 5x - 10 + x - 7
<=> -53 - 4x = 6x - 17
<=> -4x = 6x + 36
<=> -4x - 6x = 36
<=> -10x = 36
<=> x = -36/10 = -18/5

A B C D H E
a, Vì AB = BD (gt)
=> △ABD cân tại B
mà BH ⊥ AD
=> BH vừa là đường cao đồng thời là đường trung tuyến
=> H là trung điểm AD
lại có H là trung điểm của BE (HE=HB)
=> Tứ giác ABDE có 2 đường chéo cắt nhau tại trung điểm H của mỗi đường
=> ABDE là hình bình hành
mà BE ⊥ AD
=> ABDE là hình thoi
b, Vì ABCD là hình thoi => AB = CD
mà AB = DE ( do ABDE là hình thoi )
=> DC =DE

B A C D M N P Q
Xét tam giác ABC có M; N là trung điểm của Ab;AC nên:
MN//Ac; MN=1/2AC (1)
Xét tam giác ADC có P;Q là trung dime639 của AD; CD nên:
PQ//AC; PQ=1/2AC (2)
Từ (1) và (2) =>MNPQ là hình bình hành
Ta lại có: MQ là đg trung bình của tam giác ABD nên:
MQ//BD
Khi đó: MN//AC
1
A B C D E F G H
Xét tam giác vuông AEH và EBF:
AH=BF (gt)
A=B (gt)
AE=EB (gt)
=>AEH=EBF (2 cạnh góc vuông)
=> EH=EF (2 cạnh tương ứng)
Chứng minh tương tự:
Ta có tam giác AEH=EBF=HGD=FCG
=>HG=GF=FE=EH
=>EFGH là hình thoi

1. Tìm n để mỗi phép chia sau là phép chia hết (\(n\) là số tự nhiên)
a. Vì đa thức \((5x^3-7x^2+x)\) chia hết cho \(3x^n\) nên mỗi hạng tử của đa thức chia hết cho \(xn\)
=> hạng tử \(x\) – có số mũ nhỏ nhất của đa thức chia hết cho \(3x^n\) .
Do đó, \(x:xn\) \(\Rightarrow0\le n\le1\). Vậy \(n\in\text{{}0;1\)
b. Vì đa thức \((13x^4y^3-5x^3y^3+6x^2y^2)\) chia hết cho \(5x^ny^n\) nên mỗi hạng tử của đa thức trên chia hết cho \(5x^ny^n\) Do đó, hạng tử \(6x^2y^2\)chia hết cho \(5x^ny^n\) \(\Rightarrow0\le n\le2\) . Vậy \(n\in\text{ {}0;1;2\)
2 Thực hiện phép tính:
\(a.(7.3^5-3^4+3^6):3^4\)
\(=(7.3^5:3^4)+(3^6:3^4)\)
\(=7.3-1+3^2\)
\(=21-1+9=29\)
\(b.(16^3-64^2):8^3\)
\(=(16^3:8^3)-(64^2:8^3)\)
\(=(16:8)^3-(8^4:8^3)(\)vì \(64=8^2\)nên \(64^2=(8^2)^2=8^4)\)
\(=2^3-8=8-8=0\)
Sĩ thế, đi ăn huyền bee không
ok