K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4

Sĩ thế, đi ăn huyền bee không

11 tháng 4

ok


21 tháng 3 2017

Cái này phải bạn tự biểu diễn trên trục số cho dễ hiểu nhé:

Xét TH1: \(x\le-5\) thì:

\(-x-5+3\left(2-x\right)=x+4\Leftrightarrow-5x=3\)

\(\Leftrightarrow x=\dfrac{-5}{3}>-5\left(loại\right)\)

Xét TH2:\(-5\le x\le2\) thì

\(x+5+3\left(2-x\right)=x-4\Leftrightarrow-3x=-15\)

\(\Leftrightarrow x=5>2\left(loại\right)\)

Xét TH3: \(x\ge2\) thì

\(x+5+3\left(x-2\right)=x+4\Leftrightarrow3x=5\)

\(x=\dfrac{5}{3}< 2\left(loại\right)\)

Vậy pt vô nghiệm

21 tháng 3 2017

\(\left|x+5\right|+3\left|x-2\right|=x+4\\ < =>\left[{}\begin{matrix}x+5+3\left(x-2\right)=x+4\\x+5+3\left(x-2\right)=-x-4\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x+5+3x-6=x+4\\x+5+3x-6=-x-4\end{matrix}\right.\\ < =>\left[{}\begin{matrix}3x=5\\5x=-3\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{3}{5}\end{matrix}\right.\)

vậy ...

24 tháng 3 2020

dài lắm nên mình làm tắt

1) (x - 5)^2 + (x + 3)^2 = 2(x - 4)(x + 4) - 5x + 7

<=> x^2 - 10x + 25 + x^2 + 6x + 9 = 2x^2 + 8x - 8x - 32 - 5x + 7

<=> 2x^2 - 4x + 34 = 2x^2 - 5x - 25

<=> -4x + 34 = -5x - 25

<=> x + 34 = -25

<=> x = -25 - 34

<=> x = - 59

2) (x + 3)(x - 2) - 2(x + 1)^2 = (x - 3)^2 - 2x^2 + 4x

<=> x^2 - 2x + 3x - 6 - 2x^2 - 4x - 2 = x^2 - 6x + 9 - 2x^2 + 4x

<=> -x^2 - 3x - 8 = -x^2 - 2x + 9

<=> -3x - 8 = -2x + 9

<=> -x - 8 = 9

<=> -x = 9 + 8

<=> x = -17

3) (x + 1)^3 - (x + 2)(x - 4) = (x - 2)(x^2 + 2x + 4) + 2x^2

<=> x^3 + 2x^3 + x + x^2 + 2x + 1 - x^2 + 4x - 2x + 8 = x^3 + 2x^2 + 4x - 2x^2 - 4x - 8 + 2x^2

<=> 2x^2 + 5x + 9 = 2x^2 - 8

<=> 5x + 9 = -8

<=> 5x = -8 - 9

<=> 5x = -17

<=> x = -17/5

4) (x - 2)^3 + (x - 5)(x + 5) = x(x^2 - 5x) - 7x + 3

<=> x^3 - 4x^2 + 4x - 2x^2 + 8x - 8 + x^2 - 5^2 = x^3 - 5x^2 - 7x + 3

<=> 12x - 33 = -7x + 3

<=> 19x - 33 = 3

<=> 19x = 3 + 33

<=> 19x = 36

<=> x = 36/19

5) (x + 4)(x^2 - 4x + 16) - x(x - 4)^2 = 8(x - 3)(x + 3)

<=> x^3 - 4x^2 + 16x + 4x^2 - 16x + 64 - x^3 + 8x^2 - 16x = 8x^2 - 72

<=> -16x + 64 = -72

<=> -16x = -72 - 64

<=> -16x = -136

<=> x = 136/16 = 17/2

6) 4(x - 1)(x + 2) - 5(x + 7) = (2x + 3)^2 - 5x + 3

<=> 4x^2 + 8x - 4x - 8 - 5x - 35 = 4x^2 + 12x + 9 - 5x + 3

<=> -x - 43 = 7x + 12

<=> -8x - 43 = 12

<=> -8x = 12 + 43

<=> -8x = 55

<=> x = -55/8

7) (x - 1)(x^2 + x + 1) + 3(x - 2)^2 = x(x^2 + 3x - 1)

<=> x^3 + x^2 + x - x^2 - x - 1 + 3x^2 - 12x + 12 = x^3 + 3x^2 - x

<=> 3x^2 - 12x + 11 = 3x^2 - x

<=> -12x + 11 = -x

<=> 11 = -x + 12x

<=> 11 = 11x

<=> x = 1

8) (x + 5)(x - 5) - (x + 3)(x^2 - 3x + 9) = 5 - x(x^2 - x - 2)

<=> x^2 - 25 - x^3 + 3x^2 - 9 - 3x^2 + 9x - 27 = 5 - x^3 + x^2 + 2x

<=> -52 - x^3 = 5 - x^3 + 2x

<=> -52 = 5x + 2x

<=> -5x - 2x = 52

<=> -7x = 52

<=> x = -52/7

9) (x + 2)^2 - 2(x + 3)(x - 4) = 5 - x(x - 3)

<=> x^2 + 4x + 4 - 2x^2 + 8x - 6x + 24 = 5 - x^3 + 3x

<=> 6x + 28 = 5 + 3x

<=> 6x + 28 - 3x = 5

<=> 3x + 28 = 5

<=> 3x = 5 - 28

<=> 3x = -23

<=> x = -23/3

10)  (x + 7)(x - 7) - (x + 2)^2 = 5(x - 2) + (x - 7)

<=> x^2 - 49 - x^2 - 4x - 4 = 5x - 10 + x - 7

<=> -53 - 4x = 6x - 17

<=> -4x = 6x + 36

<=> -4x - 6x = 36

<=> -10x = 36

<=> x = -36/10 = -18/5

22 tháng 11 2018

A B C D H E

a, Vì AB = BD (gt)

=> △ABD cân tại B

mà BH ⊥ AD

=> BH vừa là đường cao đồng thời là đường trung tuyến

=> H là trung điểm AD

lại có H là trung điểm của BE (HE=HB)

=> Tứ giác ABDE có 2 đường chéo cắt nhau tại trung điểm H của mỗi đường

=> ABDE là hình bình hành

mà BE ⊥ AD

=> ABDE là hình thoi

b, Vì ABCD là hình thoi => AB = CD

mà AB = DE ( do ABDE là hình thoi )

=> DC =DE

14 tháng 11 2016

B A C D M N P Q

Xét tam giác ABC có M; N là trung điểm của Ab;AC nên:

MN//Ac; MN=1/2AC (1)

Xét tam giác ADC có P;Q là trung dime639 của AD; CD nên:

PQ//AC; PQ=1/2AC (2)

Từ (1) và (2) =>MNPQ là hình bình hành

Ta lại có: MQ là đg trung bình của tam giác ABD nên:

MQ//BD

Khi đó: MN//AC

14 tháng 11 2016

1

A B C D E F G H

Xét tam giác vuông AEH và EBF:

AH=BF (gt)

A=B (gt)

AE=EB (gt)

=>AEH=EBF (2 cạnh góc vuông)

=> EH=EF (2 cạnh tương ứng)

Chứng minh tương tự:

Ta có tam giác AEH=EBF=HGD=FCG

=>HG=GF=FE=EH

=>EFGH là hình thoi

8 tháng 9 2021

1. Tìm n để mỗi phép chia sau là phép chia hết (\(n\) là số tự nhiên)

a. Vì đa thức \((5x^3-7x^2+x)\) chia hết cho \(3x^n\) nên mỗi hạng tử của đa thức chia hết cho \(xn\)

=> hạng tử \(x\) – có số mũ nhỏ nhất của đa thức chia hết cho \(3x^n\) .

Do đó, \(x:xn\) \(\Rightarrow0\le n\le1\). Vậy \(n\in\text{{}0;1\)

b. Vì đa thức \((13x^4y^3-5x^3y^3+6x^2y^2)\) chia hết cho \(5x^ny^n\) nên mỗi hạng tử của đa thức trên chia hết cho \(5x^ny^n\)  Do đó, hạng tử \(6x^2y^2\)chia hết cho \(5x^ny^n\) \(\Rightarrow0\le n\le2\) . Vậy \(n\in\text{ {}0;1;2\)

2 Thực hiện phép tính:

\(a.(7.3^5-3^4+3^6):3^4\)

\(=(7.3^5:3^4)+(3^6:3^4)\)

\(=7.3-1+3^2\)

\(=21-1+9=29\)

\(b.(16^3-64^2):8^3\)

\(=(16^3:8^3)-(64^2:8^3)\)

\(=(16:8)^3-(8^4:8^3)(\) \(64=8^2\)nên \(64^2=(8^2)^2=8^4)\)

\(=2^3-8=8-8=0\)