
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 2:
a: \(\left(-\frac13x^2y\right)\cdot2xy^3=\left(-\frac13\cdot2\right)\cdot x^2\cdot x\cdot y\cdot y^3=-\frac23x^3y^4\)
b: \(\left(-\frac34x^2y\right)\cdot\left(-xy\right)^3=\left(-\frac34\right)\cdot\left(-1\right)\cdot x^2\cdot x^3\cdot y\cdot y^3=\frac34x^5y^4\)
c: \(\frac35\cdot x^2y^5\cdot x^3y^2\cdot\frac{-2}{3}=\left(\frac35\cdot\frac{-2}{3}\right)\cdot x^2\cdot x^3\cdot y^5\cdot y^2=-\frac25x^5y^7\)
d: \(\left(\frac34x^2y^3\right)\cdot\left(2\frac25x^4\right)=\frac34x^2y^3\cdot\frac{12}{5}x^4=\frac34\cdot\frac{12}{5}\cdot x^2\cdot x^4\cdot y^3=\frac95x^6y^3\)
e: \(\left(\frac{12}{15}x^4y^5\right)\cdot\left(\frac59x^2y\right)=\frac45\cdot\frac59\cdot x^4\cdot x^2\cdot y^5\cdot y=\frac49x^6y^6\)
f: \(\left(-\frac17x^2y\right)\left(-\frac{14}{5}x^4y^5\right)=\frac17\cdot\frac{14}{5}\cdot x^2\cdot x^4\cdot y\cdot y^5=\frac25x^6y^6\)
Bài 1: Các đơn thức là \(x^2y;-13;\left(-2\right)^3xy^7\)

huhuh đề này nãy bị lỗi file ạ, mọi người giúp tớ trước 8 giờ sáng hôm nay vớii, tớ đang cần gấp ạ 😭

\(a.xy-\left(-xy\right)+5xy=2xy+5xy=7xy\)
\(b.6xy^2-3xy^2-12xy^2=-9xy^2\)
\(c.3x^2y^3z^4+\left(-4x^2y^3z^4\right)=-x^2y^3z^4\)
\(d.4x^2y+\left(-8x^2y\right)=-4x^2y\)
\(e.25x^2y+\left(-55x^2y\right)=-30x^2y\)
\(f.3x^2y+4x^2y-x^2y=6x^2y\)
\(g.xy^2+x^2y+\left(-2xy^2\right)=-xy^2+x^2y=xy\left(x-y\right)\)
\(h.12x^2y^3z^4+\left(-7x^2y^3z^4\right)=5x^2y^3z^4\)
\(k.-6xy^3-\left(-6xy^3\right)+6x^3y=6x^3y\)

\(x+y+z=0\rArr\left(x+y+z\right)^2=0\)
\(\Rightarrow x^2+y^2+z^2+2xy+2yz+2zx=0\)
\(\rArr x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
\(\rArr x^2+y^2+z^2=0\) (do \(xy+yz+xz=0\) )
\(\rArr x=y=z=0\)
Do đó:
\(\left(x-1\right)^{2023}+y^{2024}+\left(z+1\right)^{2025}=\left(0-1\right)^{2023}+0^{2024}+\left(0+1\right)^{2025}=-1+0+1=0\)

Bài 2:
a: ĐKXĐ: x∉{2;-2}
b: \(A=\frac{3x}{x-2}-\frac{2}{x+2}+\frac{2x-4}{x^2-4}\)
\(=\frac{3x}{x-2}-\frac{2}{x+2}+\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{3x}{x-2}-\frac{2}{x+2}+\frac{2}{x+2}=\frac{3x}{x-2}\)
c: Thay x=-5 vào A, ta được:
\(A=\frac{3\cdot\left(-5\right)}{-5-2}=\frac{-15}{-7}=\frac{15}{7}\)
d: Để A nguyên thì 3x⋮x-2
=>3x-6+6⋮x-2
=>6⋮x-2
=>x-2∈{1;-1;2;-2;3;-3;6-6}
=>x∈{1;2;4;0;5;-1;8;-4}
Kết hợp ĐKXĐ, ta được: x∈{1;4;0;5;-1;8;-4}
Bài 1:
a: \(A=x^2+10x+25\)
\(=x^2+2\cdot x\cdot5+5^2=\left(x+5\right)^2\)
b: \(B=x^2-y^2+8x-8y\)
=(x-y)(x+y)+8(x-y)
=(x-y)(x+y+8)
c: \(C=x^2+4x-5\)
\(=x^2+5x-x-5\)
=x(x+5)-(x+5)
=(x+5)(x-1)

a: Xét ΔABC có F,E lần lượt là trung điểm của AB,AC
=>FE là đường trung bình của ΔABC
=>FE//BC và \(FE=\frac12BC\)
=>BFEC là hình thang
Hình thang BFEC có \(\hat{FBC}=\hat{ECB}\) (ΔABC cân tại A)
nên BFEC là hình thang cân
b: Xét ΔABC có
F,D lần lượt là trung điểm của BA,BC
=>FD là đường trung bình của ΔABC
=>FD//AC và \(FD=\frac{AC}{2}\)
Xét ΔMAC có
I,K lần lượt là trung điểm của MA,MC
=>IK là đường trung bình củaΔMAC
=>IK//AC và \(IK=\frac{AC}{2}\)
Ta có: FD//AC
IK//AC
Do đó: FD//IK
Ta có: \(FD=\frac{AC}{2}\)
\(IK=\frac{AC}{2}\)
Do đó: FD=IK
Xét tứ giác FDKI có
FD//IK
FD=IK
Do đó: FDKI là hình bình hành
c: HK=HM+KM
\(=\frac12\cdot\left(MB+MC\right)=\frac12\cdot BC\)
=FE
Xét tứ giác FEKH có
FE//KH
FE=KH
Do đó: FEKH là hình bình hành
=>FK cắt EH tại trung điểm của mỗi đường(1)
FDKI là hình bình hành
=>FK cắt DI tại trung điểm của mỗi đường(2)
Từ (1),(2) suy ra FK,EH,DI đồng quy
d: ΔABC đều
mà AD là đường trung tuyến
nên AD là phân giác của góc BAC và AD⊥BC
=>\(\hat{BAD}=\frac12\cdot\hat{BAC}=\frac12\cdot60^0=30^0\)
Xét tứ giác APMD có \(\hat{APM}+\hat{ADM}=90^0+90^0=180^0\)
nên APMD là tứ giác nội tiếp đường tròn đường kính AM
=>APMD nội tiếp (I)
Xét (I) có \(\hat{PAD}\) là góc nội tiếp chắn cung PD
=>\(\hat{PID}=2\cdot\hat{PAD}=60^0\)
Xét ΔIPD có IP=ID và \(\hat{PID}=60^0\)
nên ΔIPD đều

Bài 4:
a: \(C=\frac13\left(-6x^2y^2\right)^2\cdot\left(\frac12x^3y\right)=\frac13\cdot36x^4y^4\cdot\frac12x^3y\)
\(=36\cdot\frac13\cdot\frac12\cdot x^4\cdot x^3\cdot y^4\cdot y=6x^7y^5\)
b: Khi x=1;y=-1 thì \(C=6\cdot1^7\cdot\left(-1\right)^5=6\cdot1\cdot\left(-1\right)=-6\)
Bài 3:
\(D=\left(-\frac37x^2y\right)\left(\frac79x^2y^2\right)=-\frac37\cdot\frac79\cdot x^2\cdot x^2\cdot y\cdot y^2=-\frac13x^4y^3\)
hệ số là -1/3
Bậc là 4+3=7
Biến là \(x^4;y^3\)

1: \(\frac{1-a\cdot\sqrt{a}}{1-\sqrt{a}}=\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)^{}}{1-\sqrt{a}}=1+\sqrt{a}+a\)
2: \(\frac{\sqrt{x+3}+\sqrt{x-3}}{\sqrt{x+3}-\sqrt{x-3}}=\frac{\left(\sqrt{x+3}+\sqrt{x-3}\right)\left(\sqrt{x+3}+\sqrt{x-3}\right)}{\left(\sqrt{x+3}-\sqrt{x-3}\right)\left(\sqrt{x+3}+\sqrt{x-3}\right)}\)
\(=\frac{\left(\sqrt{x+3}+\sqrt{x-3}\right)^2}{x+3-\left(x-3\right)}=\frac{x+3+x-3+2\sqrt{\left(x+3\right)\left(x-3\right)}}{6}\)
\(=\frac{2x+2\sqrt{x^2-9}}{6}=\frac{x+\sqrt{x^2-9}}{3}\)
4: \(\frac{3}{2\sqrt{9x}}=\frac{3}{2\cdot3\sqrt{x}}=\frac{1}{2\sqrt{x}}=\frac{\sqrt{x}}{2}\)
5: \(\frac{1}{2\sqrt{x}}=\frac{1\cdot\sqrt{x}}{2\sqrt{x}\cdot\sqrt{x}}=\frac{\sqrt{x}}{2x}\)
7: \(\frac{\sqrt{a^3}+a}{\sqrt{a}-1}=\frac{a\cdot\sqrt{a}+a}{\sqrt{a}-1}=\frac{a\left(\sqrt{a}+1\right)}{\sqrt{a}-1}=\frac{a\left(\sqrt{a}+1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(=\frac{a\left(a+2\sqrt{a}+1\right)}{a-1}=\frac{a^2+2a\cdot\sqrt{a}+a}{a-1}\)
8: \(\frac{2}{\sqrt{a}+\sqrt{2b}}=\frac{2\cdot\left(\sqrt{a}-\sqrt{2b}\right)}{\left(\sqrt{a}+\sqrt{2b}\right)\left(\sqrt{a}-\sqrt{2b}\right)}=\frac{2\sqrt{a}-2\sqrt{2b}}{a-2b}\)
10: \(\frac{25}{\sqrt{a}-\sqrt{b}}=\frac{25\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{25\sqrt{a}+25\sqrt{b}}{a-b}\)
11: \(-\frac{ab}{\sqrt{a}-\sqrt{b}}=-\frac{ab\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{-ab\cdot\sqrt{a}-ab\cdot\sqrt{b}}{a-b}\)

a:
b: TH1: \(\hat{BAD}>90^0;\hat{ABD}>90^0\)
Ta có: ABCD là hình thang
=>\(\hat{ABC}+\hat{BCD}=180^0\)
=>\(\hat{BCD}<180^0-90^0=90^0\)
=>\(\hat{BCD}<\hat{BAD}\)
TH2: \(\hat{ADC}>90^0;\hat{DCB}>90^0\)
Ta có: ABCD là hình thang
DC//AB
=>\(\hat{CDA}+\hat{DAB}=180^0\)
=>\(\hat{DAB}<180^0-90^0=90^0\)
=>\(\hat{DAB}<\hat{DCB}\)
c: Xét tứ giác ABCD có
AB//CD
AB=CD
Do đó: ABCD là hình bình hành
a: Xét ΔOAB và ΔOCD có
\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)
\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)
Do đó: ΔOAB~ΔOCD
=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)
=>\(\dfrac{OA}{OC+OA}=\dfrac{OB}{OD+OB}\)
=>\(\dfrac{AO}{AC}=\dfrac{BO}{BD}\)(2)
Xét ΔADC có OM//DC
nên \(\dfrac{OM}{DC}=\dfrac{AO}{AC}\left(1\right)\)
Xét ΔBDC có ON//DC
nên \(\dfrac{ON}{DC}=\dfrac{BO}{BD}\left(3\right)\)
Từ (1),(2),(3) suy ra OM=ON
b: Xét ΔADC có OM//DC
nên \(\dfrac{OM}{DC}=\dfrac{AO}{AC}\)
Xét ΔCAB có ON//AB
nên \(\dfrac{ON}{AB}=\dfrac{CO}{CA}\)
\(\dfrac{OM}{DC}+\dfrac{ON}{AB}=\dfrac{AO}{AC}+\dfrac{CO}{AC}=\dfrac{AO+CO}{AC}=\dfrac{AC}{AC}=1\)
=>\(OM\left(\dfrac{1}{AB}+\dfrac{1}{CD}\right)=1\)
=>\(\dfrac{1}{AB}+\dfrac{1}{CD}=\dfrac{1}{OM}=\dfrac{2}{MN}\)
Đề bài tóm tắt:
Cho hình thang \(A B C D\) với \(A B \parallel C D\), hai đường chéo \(A C\) và \(B D\) cắt nhau tại \(O\).
Kẻ đường thẳng qua \(O\), song song với hai đáy \(A B\) và \(C D\), cắt \(A D\) tại \(M\), và cắt \(B C\) tại \(N\).
a) Chứng minh \(O M = O N\)
Lý do:
Ta có:
Hoặc đơn giản hơn:
Tam giác đồng dạng + đường song song → đoạn thẳng OM = ON
=> Kết luận: \(O M = O N\)
b) Chứng minh:
\(\frac{1}{A B} + \frac{1}{C D} = \frac{2}{M N}\)
Lý do:
Dùng tính chất đường trung bình trong tam giác + biến đổi tỉ lệ:
→ Có công thức chuẩn:
\(\frac{1}{A B} + \frac{1}{C D} = \frac{2}{M N}\)
Đây là định lý hình học kinh điển, có thể chứng minh bằng tam giác đồng dạng hoặc biến đổi tỉ số đoạn thẳng theo hệ số đồng dạng.
c) Biết:
Tính diện tích tứ giác \(A B C D\):
Phân tích:
Hai tam giác tạo thành hình thang là:
\(S_{A B C D} = S_{A O B} + S_{C O D} = 2008^{2} + 2009^{2}\)
Tính toán:
Áp dụng hằng đẳng thức:
\(a^{2} + b^{2} = \left(\right. a + b \left.\right)^{2} - 2 a b\)
Ta có:
\(S_{A B C D} = 2008^{2} + 2009^{2} = \left(\right. 2008 + 2009 \left.\right)^{2} - 2 \cdot 2008 \cdot 2009\) \(= 4017^{2} - 2 \cdot 2008 \cdot 2009\)
Tính chi tiết:
Tính:
\(2008 \cdot 2009 = \left(\right. 2008 \left.\right) \left(\right. 2008 + 1 \left.\right) = 2008^{2} + 2008 = 4 , 032 , 064 + 2008 = 4 , 034 , 072\) \(\Rightarrow 2 \cdot 2008 \cdot 2009 = 2 \cdot 4 , 034 , 072 = 8 , 068 , 144\)
Cuối cùng:
\(S_{A B C D} = 16 , 136 , 289 - 8 , 068 , 144 = \boxed{8 , 068 , 145}\)
✅ Đáp án: