K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét (O) có

\(\widehat{ABE}\) là góc tạo bởi tiếp tuyến BA và dây cung BE

\(\widehat{BDE}\) là góc nội tiếp chắn cung BE

Do đó: \(\widehat{ABE}=\widehat{BDE}\)

Xét ΔABE và ΔADB có

\(\widehat{ABE}=\widehat{ADB}\)

\(\widehat{BAE}\) chung

Do đó: ΔABE~ΔADB

=>\(\dfrac{AB}{AD}=\dfrac{AE}{AB}\)

=>\(AD\cdot AE=AB^2\)

2 tháng 2 2021

Giúp mình với

 

2 tháng 2 2021

Bn giúp mik câu dưới đc ko

17 tháng 12 2021

Mà bạn có thể vẽ hình đc ko

18 tháng 12 2021

a:Xét (O) có 

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC

hay A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

hay OA⊥BC

QT
Quoc Tran Anh Le
Giáo viên
28 tháng 8

mk giúp đc ko ?

25 tháng 4 2020

mik ko giúp đc

chúc hok tốt nha b