
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) vì x và y tỷ lệ nghịch voeis nhau nên ta có công thức: x=a/y
=> 4=a/10
=>a=4x10
=>a=40
b) y=40/x
c) nếu x=5 => y=40/5=>y=8
nếu x= -8=> y=40/-8=>y=-5
HT

nếu \(a\perp b\) và b//c thì ta có : \(a\perp c\)
vậy chọn đáp án B

A B C D E K F
a, K;F là trung điểm của BD; BC (gt)
=> FK là đtb của tg BDC
=> FK // DC
mà DC // AB do ABCD là hình thang
=> FK//AB
b, K;E là trung điểm của BD; AD => KE là đtb của tg ABD
=> KE = 1/2 AB VÀ KE // AB
có AB = 4
=> ke = 2 cm
c, có KE // AB mà KF // AB
=> E;K;F thẳng hàng (tiên đề ơ clit)

a) Ta có : (3x - 0.5) ( 2x + 2.5) = 0
\(\Leftrightarrow\orbr{\begin{cases}3x-0,5=0\\2x+2,5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=0,5\\2x=-2,5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{0,5}{3}=\frac{1}{6}\\x=-\frac{2,5}{2}=\frac{5}{4}\end{cases}}\)

GT l Góc xOy< 180 độ ; OA<OC; OB=OA: OD=OC
KL l a) O là góc chung của tam giác ? và tam giác ?. Tam giác OAD = tam giác OBC
b) Góc ODA = góc OCB; DA=BC
a) O là góc chung của 2 tam giác OAD và OBC.
Xét tam giác OAD và tam giác OBC:
+ Chung góc O
+ OA = OB (gt)
+ OC=OD
==> Tam giác OAD = tam giác OBC ( c.g.c)
Vậy tam giác OAD = tam giác OBC
b) Ta có: Tam giác OAD = tam giác OBC ( cmt)
==> Góc OAD = góc OCB ( 2 góc tương ứng ) ; DA=BC ( 2 cạnh tương ứng )
Vậy góc OAD = góc OCB; DA=BC

Để giải phương trình \(x^{3} + 3 x^{2} + 5 = 5 y\), ta có thể thực hiện các bước như sau:
Bước 1: Biến đổi phương trình
Ta muốn tìm giá trị của \(y\) theo \(x\). Để làm điều này, ta chỉ cần chia cả hai vế của phương trình cho 5:
\(x^{3} + 3 x^{2} + 5 = 5 y\) \(y = \frac{x^{3} + 3 x^{2} + 5}{5}\)
Bước 2: Kết luận
Phương trình đã được biến đổi thành:
\(y = \frac{x^{3} + 3 x^{2} + 5}{5}\)
Đây là công thức để tính giá trị của \(y\) khi biết giá trị của \(x\).