Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

M P N I H K
Câu a, b em tự làm nhé nó khá đơn giản
câu c)
Áp dụng định lí pitago cho 2 tam giác vuông IKM và IKP ta có:
\(IK^2=MI^2-MK^2\)
\(IK^2=IP^2-KP^2\)
Cộng vế theo vế ta có;
\(2IK^2=MI^2-MK^2+IP^2-KP^2=\left(MI^2+IP^2\right)-MK^2-KP^2=MP^2-MK^2-KP^2\)( Áp dụng định lí pita go cho tam giác MIP)
Mà MP=MN
=> Điều p cm

M P N 3 4 A C G
a) xét \(\Delta MNP\)VUÔNG TẠI M CÓ
\(\Rightarrow NP^2=MN^2+MP^2\left(PYTAGO\right)\)
THAY\(NP^2=4^2+3^2\)
\(NP^2=16+9\)
\(NP^2=25\)
\(\Rightarrow NP=\sqrt{25}=5\left(cm\right)\)
XÉT \(\Delta MNP\)CÓ
\(\Rightarrow NP>MN>MP\left(5>4>3\right)\)
\(\Rightarrow\widehat{M}>\widehat{P}>\widehat{N}\)( QUAN HỆ GIỮA CẠNH VÀ GÓC ĐỐI DIỆN)
B) xét \(\Delta\text{ CPM}\)VÀ\(\Delta\text{CPA}\)CÓ
\(PM=PA\left(GT\right)\)
\(\widehat{MPC}=\widehat{APC}=90^o\)
PC LÀ CAH CHUNG
=>\(\Delta\text{ CPM}\)=\(\Delta\text{CPA}\)(C-G-C)
c)
\(\Delta CPM=\Delta CPA\left(cmt\right)\)
\(\Rightarrow\widehat{CMP}=\widehat{CPA}\left(\text{hai góc tương ứng}\right)\)
\(\text{Ta có: }\)\(\widehat{MNA}+\widehat{NAM}=90^o\left(\Delta MNA\perp\text{ tại M}\right)\)
\(\widehat{NMC}+\widehat{CMP}=90^o\)
\(\Rightarrow\widehat{MNA}+\widehat{NAM}=\)\(\widehat{NMC}+\widehat{CMP}\)
\(\Rightarrow\widehat{MNA}=\widehat{NMC}\left(\widehat{CMP}=\widehat{NAM}\right)\)
\(Hay:\)\(\widehat{MNC}=\widehat{NMC}\)
\(\Rightarrow\Delta NMC\text{ cân}\)
\(\Rightarrow CN=CM\left(đpcm\right)\)

Chỉ còn vài tiếng nữa là mình nộp bài rồi, mong các bạn dành ra ít thời gian để giúp đỡ mình. Mình sẽ tích đúng cho các bạn, mình cảm ơn trước!!!!

tự kẻ hình nha
a) xét tam giác BAN và tam giác BAP có
AB chung
BAN=BAP(=90 độ)
NA=AP(gt)
=> tam giác BAN= tam giác BAP(cgc)
=> BNA=BPA(hai góc tương ứng)
=> tam giác BNP cân B=> BN=BP
b) xét tam giác BMN và tam giác BCP có
NB=BP(cmt)
BMN=BCP(=90 độ)
MBN=CBP( đối đỉnh)
=> tam giác BMN= tam giác BCP(ch-gnh)
c) từ tam giác BAN=BAP=> NBA=PBA( hai cạnh tương ứng)
từ tam giác BMN= tam giác BCP=> MB=BC( hai cạnh tương ứng)
xét tam giác BMA và tam giác BCA có
MB=BC(cmt)
MBA=CBA(=CBP+PBA)
AB chung
=> tam giác BMA= tam giác BCA(cgc)
=> MAB=CAB(hai góc tương ứng)
=> AB là p/g của MAC
a: Xét ΔMCN và ΔMCP có
MC chung
CN=CP
MN=MP
Do đó ΔMCN=ΔMCP
b: Ta có: MN=MP
=>M nằm trên đường trung trực của NP(1)
Ta có: CN=CP
=>C nằm trên đường trung trực của NP(2)
Từ (1),(2) suy ra MC là đường trung trực của NP
Bài giải:
a) Chứng minh tam giác MCN = tam giác MCP
b) Chứng minh MC là đường trung trực của NP