Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, \(BH\perp AD\left(gt\right)\Rightarrow\widehat{BHA}=\widehat{BHD}=90^0\)
\(CK\perp AD\left(gt\right)\Rightarrow\widehat{AKC}=90^0\)
Xét \(\Delta BHD\)và \(\Delta CKD\) có:
\(\widehat{BHD}=\widehat{CKD}=90^0\)
\(\widehat{BDH}=\widehat{CDK}\) (đối đỉnh)
Do đó: \(\Delta BHD\infty\Delta CKD\left(g.g\right)\)
b, Xét \(\Delta ABH\) và \(\Delta ACK\) có:
\(\widehat{BAH}=\widehat{CAK}\) (vì AD là tia p/g của góc BAC)
\(\widehat{AHB}=\widehat{AKC}=90^0\)
Do đó: \(\Delta ABH\infty\Delta ACK\left(g.g\right)\)
Suy ra: \(\frac{AB}{AH}=\frac{AC}{AK}\) hay \(AB.AK=AC.AH\)
C, \(\Delta ABH\infty\Delta ACK\left(cmt\right)\Rightarrow\frac{BH}{CK}=\frac{AB}{AC}\left(1\right)\)
\(\Delta BHD=\Delta CKD\left(cmt\right)\Rightarrow\frac{DH}{DK}=\frac{BH}{CK}\left(2\right)\)
Từ (1) và (2), ta được: \(\frac{DH}{DK}=\frac{BH}{CK}=\frac{AB}{AC}\)
d, Gọi giao điểm giữa FM và BH là O và giao điểm giữa FM và CK là I.
Bạn chứng minh được tam giác BOF tại O và tam giác CIE vuông tại I
\(\Delta BOM=\Delta CIM\left(ch.gn\right)\Rightarrow BO=CI\)(2 cạnh tương ứng)
\(AD//FM\left(gt\right)\Rightarrow\hept{\begin{cases}\widehat{BAD}=\widehat{F}\\\widehat{DAC}=\widehat{IEC}\end{cases}}\)(đồng vị)
Suy ra: \(\widehat{F}=\widehat{IEC}\)
Mà \(\hept{\begin{cases}\widehat{F}+\widehat{FBO}=90^0\\\widehat{IEC}+\widehat{ICE}=90^0\end{cases}}\)
Nên \(\widehat{FBO}=\widehat{ICE}\)
Chứng minh được \(\Delta FBO=\Delta ECI\left(g.c.g\right)\Rightarrow BF=CE\)(2 cạnh tương ứng)
Chúc bạn học tốt.

a: Xét ΔAED vuông tại E và ΔADB vuông tại D có
\(\hat{EAD}\) chung
Do đó: ΔAED~ΔADB
=>\(\frac{AE}{AD}=\frac{AD}{AB}\)
=>\(AE\cdot AB=AD^2\left(1\right)\)
b: Xét ΔAFD vuông tại F và ΔADC vuông tại D có
\(\hat{FAD}\) chung
Do đó: ΔAFD~ΔADC
=>\(\frac{AF}{AD}=\frac{AD}{AC}\)
=>\(AF\cdot AC=AD^2\left(2\right)\)
Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)
=>\(\frac{AE}{AC}=\frac{AF}{AB}\)
Xét ΔAEF và ΔACB có
\(\frac{AE}{AC}=\frac{AF}{AB}\)
góc FAE chung
Do đó: ΔAEF~ΔACB
=>\(\hat{AFE}=\hat{ABC}\)
c: Xét tứ giác AEDF có \(\hat{AED}+\hat{AFD}=90^0+90^0=180^0\)
nên AEDF là tứ giác nội tiếp
=>\(\hat{EFD}=\hat{EAD}\)
mà \(\hat{EAD}=\hat{EDB}\left(=90^0-\hat{ABD}\right)\)
nên \(\hat{EFD}=\hat{EDB}\)
=>\(\hat{IDE}=\hat{IFD}\)
Xét ΔIDE và ΔIFD có
\(\hat{IDE}=\hat{IFD}\)
góc DIE chung
Do đó: ΔIDE~ΔIFD
=>\(\frac{ID}{IF}=\frac{IE}{ID}\)
=>\(ID^2=IE\cdot IF\)
Để chứng minh SC.BD = SB.CD, chúng ta sẽ sử dụng định lý Menelaus và các tính chất của tam giác đồng dạng.
1. Áp dụng định lý Menelaus cho tam giác BCD và đường thẳng NSK:
Theo định lý Menelaus, ta có:
(SB/SC) * (CK/KD) * (DN/NB) = 1
2. Biến đổi tỉ số:
Ta cần biến đổi tỉ số (CK/KD) và (DN/NB) để có thể liên quan đến BD và CD.
3. Thay tỉ số vào định lý Menelaus:
Thay CK/KD = CD/AD và DN/NB = BD/AD vào biểu thức (1), ta được:
(SB/SC) * (CD/AD) * (BD/AD) = 1
4. Biến đổi biểu thức:
Nhân cả hai vế với (AD/BD) * (AD/CD), ta được:
(SB/SC) * (CD/AD) * (BD/AD) * (AD/BD) * (AD/CD) = (AD/BD) * (AD/CD)
(SB/SC) * 1 * 1 = (AD/BD) * (AD/CD)
SB/SC = (AD/BD) * (AD/CD)
5. Nhân chéo:
Nhân chéo hai vế, ta được:
SB * CD = SC * BD
6. Kết luận:
Vậy, ta đã chứng minh được:
SC.BD = SB.CD