K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Chứng minh EH vuông góc AB

  • Xét tam giác AEB:
    • Vì AB = AE (giả thiết), tam giác AEB là tam giác cân tại A.
    • AD là tia phân giác của góc BAC, nên AD cũng là đường trung tuyến của tam giác AEB.
    • Do đó, D là trung điểm của BE.
  • Xét tam giác AEB và tam giác AFB:
    • AB = AE (giả thiết)
    • Góc BAF = góc EAF (AD là tia phân giác)
    • AF cạnh chung
    • Do đó, tam giác AEB = tam giác AFB (c.g.c)
    • suy ra góc ABE = góc AEB.
  • Xét tam giác AHB và tam giác AHE:
    • AH cạnh chung
    • góc BAH = góc EAH (AD là tia phân giác)
    • AB = AE (giả thiết)
    • Do đó, tam giác AHB = tam giác AHE (c.g.c)
    • suy ra góc AHB = góc AHE.
  • Xét H là giao điểm của AD và BF
    • BF vuông góc với AC, nên góc AFH = 90 độ.
    • Mà góc AHB = góc AHE, nên góc AHB = 90 độ.
    • Vậy, EH vuông góc AB.

b) Tính số đo góc DHF

  • Tính góc ACB:
    • Trong tam giác ABC, góc BAC = 70 độ.
    • Vì AB < AC, nên góc ACB < góc ABC.
    • Ta có: góc ABC + góc ACB = 180 độ - góc BAC = 180 độ - 70 độ = 110 độ.
  • Tính góc DHF:
    • Trong tam giác DHF, góc DHF = 180 độ - góc HDF - góc HFD.
    • Góc HFD = 90 độ (BF vuông góc AC).
    • Góc HDF = góc ADB.
    • góc ADB = 180 độ - góc DAB - góc ABD.
    • góc DAB = 35 độ (AD là tia phân giác)
    • Vậy ta cần tính góc ABD.
    • Góc DHF = góc BHC (hai góc đối đỉnh)
    • Góc BHC = 180 độ - góc HBC - góc HCB.
    • Góc HCB = góc FCB.
    • góc HBC = góc FBA.
  • Tính góc DHF:
    • Xét tam giác ABF vuông tại F: góc FBA = 90 độ - góc BAF = 90 độ - 35 độ = 55 độ.
    • Góc FCB = 90 độ - góc FBC.
    • Vậy góc DHF = 70 độ.

Vậy, số đo góc DHF là 70 độ.

30 tháng 3

ê


Bài 1: Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Qua E kẻ đường thẳng d vuông góc với BC và d cắt AC tại D.a) Tính độ dìa AC khi AB= 9cm, BC= 15cmb) Chứng minh: Tam giác ABD=tam giác EBDc) Gọi H là giao điểm của đường thẳng AB và đường thẳng d. Chứng minh tam giác HBC când) Chứng minh: AD<DCBài 2: Cho tam giác ABC vuông tại A có AB= 12cm, AC= 16cm.Kẻ BF là đường trung tuyến của tam...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Qua E kẻ đường thẳng d vuông góc với BC và d cắt AC tại D.

a) Tính độ dìa AC khi AB= 9cm, BC= 15cm

b) Chứng minh: Tam giác ABD=tam giác EBD

c) Gọi H là giao điểm của đường thẳng AB và đường thẳng d. Chứng minh tam giác HBC cân

d) Chứng minh: AD<DC

Bài 2: Cho tam giác ABC vuông tại A có AB= 12cm, AC= 16cm.Kẻ BF là đường trung tuyến của tam giác ABC. Từ điểm C kẻ đường thẳng vuông góc với AC cắt đường trung tuyến BF tại D

a) Tính độ dài BC?

b) Chứng minh rằng: Tam giác ABF=tam giác CDF

c) Chứng minh: BF<(AB+BC):2

Bài 3: Cho tam giacsABC vuông tại A; tia phân giác của góc B cắt AC tại D. Kẻ DH vuông góc với BC\(\left(H\in BC\right)\). Gọi K là giao điểm của AB và DH

a) Tính độ dài BC khi AB= 9cm, AC= 12cm

b) Chứng minh: Tam giác ABD=tam giác HBD

c) Chứng minh: Tam giác KDC cân

d) Chứng minh: AB+AC>BD+DC
Bài 4: Cho tam giác ABC vuông tại A. Trên tia BC lấy điểm H sao cho BH=BA. Tia phân giác của góc B cắt AC tại D. Gọi K là giao điểm của AB và DH

a) Tính độ dài BC khi AB= 3cm, AC= 4cm

b) Chứng minh: Tam giác ABD=tam giác HBD

c) Chứng minh \(Dh\perp BC\)

d) So sánh DH với DK

 

 

6
3 tháng 5 2019

4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha

*In đậm: quan trọng.

3 tháng 5 2019

#)Góp ý :

Giải thì vẫn giải đc, chỉ tại dài quá, người nhìn thấy dài thì chẳng ai muốn giải đâu, vì lười, mak mún kiếm P nhanh mà, là mình thì vẫn giải đc nhưng sẽ mất tg đó, chắc 15-30p :v

a: Xét ΔABE và ΔADE có

AB=AD

\(\widehat{BAE}=\widehat{DAE}\)

AE chung

DO đó: ΔABE=ΔADE

b: Ta có: ΔABD cân tại A

mà AI là đường phân giác

nên I là trung điểm của BD

 

29 tháng 11 2016

THANH TRÚC GIÚP MIK GIẢI ĐỐ

25 tháng 4 2017

Cho tam giác ABC, AB<AC.Tia p/g của góc A cắt BC ở D, trên tia AC lấy điểm E sao cho AE=AB. Gọi tia M là giao điểm của AB va DE
Cmr: a) tam giác ABD=tam giacd AED
         b) tam giacd DBM=tam giác DEC

18 tháng 1 2018

sao nhiều v bạn

11 tháng 11 2016

Bài này khó quá!

Mình chỉ giải được câu a thôi!

Bạn tự vẽ hình ghi gt kl nha!

a) Xét 2 tam giác ABI và ADI có:

AI là cạnh chung

Góc A1 = góc A2 (gt)

AB = AD (gt)

Suy ra tam giác ABI = tam giác ADI (c-g-c)

Suy ra IB = ID (2 cạnh tương ứng)

 

11 tháng 11 2016

b) Ta co: goc BIE=goc DIC(doi dinh)

=> goc AIE=goc AIB+goc BIE=goc AID+goc DIC=gocAIC

Xet 2 tam giac AIE va tam giac AIC, ta co:

goc EAI=goc CAI = 45o

chung AI

goc AIE= goc AIC(cmt)

=> tam giac AIE=tam giac AIC (g.c.g)

=> AC = AE

7 tháng 12 2016

?????????????????????????????????????????????????????

23 tháng 7 2021

Mình đã đăng lại câu hỏi dễ hiểu hơn theo link này rồi ạ: https://olm.vn/hoi-dap/detail/1306671964747.html?auto=1

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau