K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chắc chắn rồi, hãy cùng giải bài toán này từng bước nhé!

Bước 1: Tính từng biểu thức trong ngoặc

  • 1/2 - 1/3 = 3/6 - 2/6 = 1/6
  • 1/2 - 1/5 = 5/10 - 2/10 = 3/10
  • 1/2 - 1/7 = 7/14 - 2/14 = 5/14
  • 1/2 - 1/9 = 9/18 - 2/18 = 7/18

Bước 2: Thay kết quả vào biểu thức ban đầu

(1/6) * (3/10) * (5/14) * (7/18)

Bước 3: Rút gọn biểu thức

  • (1 * 3 * 5 * 7) / (6 * 10 * 14 * 18)
  • (1 * 1 * 1 * 1) / (2 * 2 * 2 * 18)
  • 1 / (8 * 18)
  • 1/144

Kết quả

(1/2 - 1/3) * (1/2 - 1/5) * (1/2 - 1/7) * (1/2 - 1/9) = 1/144

30 tháng 3
=\(\frac{1}{2.3}.\frac{3}{2.5}.\frac{5}{2.7}.\frac{7}{2.9}\)

=\(\frac{1.3.5.7}{2.3.2.5.2.7.2.9}\)

=\(\frac{1}{2.2.2.2.9}\)

=\(\frac{1}{16.9}\)

=\(\frac{1}{144}\)

17 tháng 8

Kết quả là 2870.

Giải nhanh bằng công thức tổng bình phương:

\(1^{2} + 2^{2} + \hdots + n^{2} = \frac{n \left(\right. n + 1 \left.\right) \left(\right. 2 n + 1 \left.\right)}{6}\)

Với \(n = 20\):

\(\frac{20 \cdot 21 \cdot 41}{6} = \frac{17220}{6} = 2870.\)

17 tháng 8

Ta có biểu thức:

\(1\times1+2\times2+3\times3+\ldots+20\times20=1^2+2^2+3^2+\ldots+20^2\)

Đây là tổng các số chính phương từ 1 đến 20.

Áp dụng công thức tổng bình phương:

\(1^2+2^2+3^2+\ldots+n^2=\frac{n \left(\right. n + 1 \left.\right) \left(\right. 2 n + 1 \left.\right)}{6}\)

Thay \(n = 20\):

\(\frac{20 \times 21 \times 41}{6} = \frac{17220}{6} = 2870\)

20 tháng 5 2018

a) Đặt \(A=\frac{7^{15}}{1+7+7^2+...+7^{14}}\)

Đặt \(B=1+7+7^2+...+7^{14}\)

\(\Rightarrow7B=7+7^2+...+7^{15}\)

\(\Rightarrow7B-B=6B=7^{15}-1\)

\(\Rightarrow B=\frac{7^{15}-1}{6}\)

\(\Rightarrow A=\frac{7^{15}-1+1}{\frac{7^{15}-1}{6}}=\left(7^{15}-1\right).\frac{6}{7^{15}-1}+\frac{6}{7^{15}-1}=6+\frac{6}{7^{15}-1}\)

Tự làm tiếp nha

21 tháng 5 2018

bạn giải nốt đi

12 tháng 6 2018

b, Ta có:\(\dfrac{1+3+3^2+.....+3^{10}}{1+3+3^2+.....+3^9}\) \(=\dfrac{1}{1+3+3^2+...+3^9}+\dfrac{3+3^2+...+3^{10}}{1+3+3^2+...+3^9}\)\(=\dfrac{1}{1+3+3^2+...+3^9}+\dfrac{3.\left(1+3+3^2+...+3^9\right)}{1+3+3^2+...+3^9}\)

\(=\dfrac{1}{1+3+3^2+...+3^9}+3< 4\)

\(\Rightarrow\) \(\dfrac{1+3+3^2+...+3^{10}}{1+3+3^2+...+3^9}< 4\) \(\left(1\right)\)

Ta có :\(\dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}\)

\(=\dfrac{1}{1+5+5^2+...+5^9}+\dfrac{5+5^2+...+5^{10}}{1+5+5^2+....+5^9}\)

\(=\dfrac{1}{1+5+5^2+...+5^9}+\dfrac{5.\left(1+5+5^2+...+5^9\right)}{1+5+5^2+...+5^9}\)

\(=\dfrac{1}{1+5+5^2+...+5^9}+5>5\)

\(\Rightarrow\) \(\dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}>5\) \(\left(2\right)\)

Từ \(\left(1\right)và\left(2\right)\)

\(\Rightarrow\dfrac{1+3+3^2+...+3^{10}}{1+3+3^2+...+3^9}< \dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}\)

Vậy \(\dfrac{1+3+3^2+...+3^{10}}{1+3+3^2+...+3^9}< \dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}\)

12 tháng 6 2018

a, Đặt \(A\)\(=\dfrac{7^{15}}{1+7+7^2+...+7^{14}}\)

\(\Rightarrow\) \(\dfrac{1}{A}\) \(=\dfrac{1+7+7^2+...+7^{14}}{7^{15}}=\dfrac{1}{7^{15}}+\dfrac{7}{7^{15}}+\dfrac{7^2}{7^{15}}+...+\dfrac{7^{14}}{7^{15}}\)

\(=\dfrac{1}{7^{15}}+\dfrac{1}{7^{14}}+\dfrac{1}{7^{13}}+....+\dfrac{1}{7}\)

Đặt \(B=\dfrac{9^{15}}{1+9+9^2+...+9^{14}}\)

\(\Rightarrow\dfrac{1}{B}=\dfrac{1+9+9^2+...+9^{14}}{9^{15}}=\dfrac{1}{9^{15}}+\dfrac{9}{9^{15}}+\dfrac{9^2}{9^{15}}+...+\dfrac{9^{14}}{9^{15}}\)

\(=\dfrac{1}{9^{15}}+\dfrac{1}{9^{14}}+\dfrac{1}{9^{13}}+...+\dfrac{1}{9}\)

\(\dfrac{1}{7^{15}}>\dfrac{1}{9^{15}};\dfrac{1}{7^{14}}>\dfrac{1}{9^{14}};\dfrac{1}{7^{13}}>\dfrac{1}{9^{13}};....;\dfrac{1}{7}>\dfrac{1}{9}\)

\(\Rightarrow\dfrac{1}{A}>\dfrac{1}{B}\) \(\Rightarrow A< B\)

Vậy\(\dfrac{7^{15}}{1+7+7^2+...+7^{14}}>\dfrac{9^{15}}{1+9+9^2+....+9^{14}}\)

2 tháng 1 2018

\(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}=\frac{1+5\left(1 +5+5^2+...+5^8\right)}{1+5+5^2+...+5^8}=5+\frac{1}{1+5+5^2+...+5^8} \)

\(B=\frac{1+3+3^2+....+3^9}{1+3+3^2+....+3^8}=\frac{1+3\left(1+3+3^2+....+3^8\right)}{1+3+3^2+....+3^8}=3+\frac{1}{1+3+3^2+....+3^8}\)

\(=5+\frac{1}{1+3+3^2+....+3^8}-2\)  

Có: \(\frac{1}{1+5+5^2+...+5^8}>0\)              và      \(\frac{1}{1+3+3^2+....+3^8}-2< 0\)

\(\Rightarrow A>B\)

27 tháng 7 2019

\(1+3+5+...+\left(2n-1\right)\)

\(=\frac{\left[\left(2n-1-1\right):2+1\right]\left(2n-1+1\right)}{2}\)

\(=\frac{\left[\left(2n-2\right):2+1\right]2n}{2}\)

\(=\frac{\left(n-1+1\right)2n}{2}\)

\(=\frac{n.2n}{2}\)

\(=\frac{2n^2}{2}\)

\(=n^2\)

31 tháng 12 2017

A = 1 + 7^9/1+7+7^2+....+7^8

   = 1 + 7^9-1/1+7+....+7^8 + 1/1+7+....+1/7^8

   = 1 + 7-1 + 1/1+7+....+7^8

   = 7 + 1/1+7+....+7^8

Tương tự : B = 5 + 1/1+5+....+5^8

Vì 1/1+5+.....+5^8 < 1 => B < 5+1 = 6

Mà A > 6 => A > B

k mk nha

31 tháng 12 2017

Bạn viết phân số được ko bạn mình đọc ko hiểu

31 tháng 7 2020

Tính toán cơ bản mình nghĩ học sinh lớp 6 nào cũng làm được chứ nhỉ?? Bài yêu cầu gì vậy bạn?

9 tháng 2 2017

1. \(\frac{5}{9}.\frac{7}{13}+\frac{5}{9}.\frac{9}{13}-\frac{5}{9}.\frac{3}{13}\)

= \(\frac{5}{9}\) .(\(\frac{7}{13}+\frac{9}{13}-\frac{3}{13}\) )

= \(\frac{5}{9}\) . 1 = \(\frac{5}{9}\)

1: \(=\dfrac{16}{15}\left(-\dfrac{4}{9}+\dfrac{3}{7}\right)+\dfrac{16}{15}\left(\dfrac{4}{7}-\dfrac{5}{9}\right)\)

\(=\dfrac{16}{15}\left(-\dfrac{4}{9}+\dfrac{3}{7}+\dfrac{4}{7}-\dfrac{5}{9}\right)=0\)

2: \(=\dfrac{29}{9}\left(15+\dfrac{4}{7}-8-\dfrac{1}{7}+\dfrac{15}{7}-\dfrac{1}{7}\right)\)

\(=\dfrac{20}{9}\cdot\left(7\cdot\dfrac{18}{7}\right)=\dfrac{20}{9}\cdot18=40\)