
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có : A = \(\frac{10^{2020}+1}{10^{2021}+1}\)
=> 10A = \(\frac{10^{2021}+10}{10^{2021}+1}=1+\frac{9}{10^{2021}+1}\)
Lại có : \(B=\frac{10^{2021}+1}{10^{2022}+1}\)
=> \(10B=\frac{10^{2022}+10}{10^{2022}+1}=1+\frac{9}{10^{2022}+1}\)
Vì \(\frac{9}{10^{2022}+1}< \frac{9}{10^{2021}+1}\)
=> \(1+\frac{9}{10^{2022}+1}< 1+\frac{9}{10^{2022}+1}\)
=> 10B < 10A
=> B < A
b) Ta có : \(\frac{2019}{2020+2021}< \frac{2019}{2020}\)
Lại có : \(\frac{2020}{2020+2021}< \frac{2020}{2021}\)
=> \(\frac{2019}{2020+2021}+\frac{2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)
=> \(\frac{2019+2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)
=> B < A

a, \(\frac{15}{106}\)và \(\frac{21}{133}\)
Ta có:
\(\frac{15}{106}< \frac{15}{100}=\frac{3}{20}=\frac{21}{140}< \frac{21}{133}\)
\(\Rightarrow\frac{15}{106}< \frac{21}{133}\)
Vậy ........
b, \(\frac{31}{100}\)và \(\frac{89}{150}\)
Ta có:
\(\frac{31}{100}< \frac{31}{93}=\frac{1}{3}=\frac{50}{150}< \frac{89}{150}\)
\(\Rightarrow\frac{31}{100}< \frac{89}{150}\)
Vậy........
c, \(\frac{2020}{2019}\)và \(\frac{2021}{2020}\)
Ta có:
\(\frac{2020}{2019}-1=\frac{1}{2019}\) ;
\(\frac{2021}{2020}-1=\frac{1}{2020}\)
Vì \(\frac{1}{2019}>\frac{1}{2020}\)
\(\Rightarrow\frac{2020}{2019}-1>\frac{2021}{2020}-1\)
\(\Rightarrow\frac{2020}{2019}>\frac{2021}{2020}\)
Vậy .........
d, n+2019/n+2021 và n+2020/n+2022
Câu d bn tự lm nhé

B/A
\(=\dfrac{1+\dfrac{2020}{2}+1+\dfrac{2019}{3}+...+1+\dfrac{1}{2021}+1}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}}\)
\(=\dfrac{2022\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}}=2022\)

Ta có: \(\frac{2019}{2020}>\frac{2019}{2020+2021};\frac{2020}{2021}>\frac{2020}{2020+2021}\)
=> \(\frac{2019}{2020}+\frac{2020}{2021}>\frac{2019}{2020+2021}+\frac{2020}{2020+2021}=\frac{2019+2020}{2020+2021}\)
=> A > B.

a/
2020.2021=(2019+1)(2022-1)=
=2019.2022-2019+2022-1=2019.2022+2>2019.2022
b/
\(4^7=\left(2^2\right)^7=2^{14}< 2^{15}\)
c/
\(199^{20}< 200^{20}=\left(8.25\right)^{20}=\left(2^3.5^2\right)^{20}=2^{60}.5^{40}\)
\(2000^{15}=\left(16.125\right)^{15}=\left(2^4.5^3\right)^{15}=2^{60}.5^{45}\)
\(\Rightarrow2000^{15}=2^{60}.5^{45}>2^{60}.5^{40}>199^{20}\)
d/
\(31^{31}< 32^{31}=\left(2^5\right)^{31}=2^{155}\)
\(17^{39}>16^{39}=\left(2^4\right)^{39}=2^{156}\)
\(\Rightarrow17^{39}=2^{156}>2^{155}>31^{31}\)

N =2019+2020/2020+2021
=2019/2020+2021 + 2020/2020+2021
Ta có:
2019/2020>2019/2020+2021
2020/2021 > 2020/2020+2021
=>M>N

B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + \(\dfrac{2022}{1}\)
B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + 2022
B = 1 + ( 1 + \(\dfrac{1}{2022}\)) + ( 1 + \(\dfrac{2}{2021}\)) + \(\left(1+\dfrac{3}{2020}\right)\)+ ... + \(\left(1+\dfrac{2021}{2}\right)\)
B = \(\dfrac{2023}{2023}\) + \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2021}\) + \(\dfrac{2023}{2020}\) + ...+ \(\dfrac{2023}{2}\)
B = 2023 \(\times\) ( \(\dfrac{1}{2023}\) + \(\dfrac{1}{2022}\) + \(\dfrac{1}{2021}\) + \(\dfrac{1}{2020}\)+ ... + \(\dfrac{1}{2}\))
Vậy B > C
không thể phân biệt❗