K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tham khảo:

loading...

30 tháng 7 2020

Ta có : A = \(\frac{10^{2020}+1}{10^{2021}+1}\)

=> 10A = \(\frac{10^{2021}+10}{10^{2021}+1}=1+\frac{9}{10^{2021}+1}\)

Lại có : \(B=\frac{10^{2021}+1}{10^{2022}+1}\)

=> \(10B=\frac{10^{2022}+10}{10^{2022}+1}=1+\frac{9}{10^{2022}+1}\)

Vì \(\frac{9}{10^{2022}+1}< \frac{9}{10^{2021}+1}\)

=> \(1+\frac{9}{10^{2022}+1}< 1+\frac{9}{10^{2022}+1}\)

=> 10B < 10A

=> B < A

b) Ta có : \(\frac{2019}{2020+2021}< \frac{2019}{2020}\)

Lại có : \(\frac{2020}{2020+2021}< \frac{2020}{2021}\)

=> \(\frac{2019}{2020+2021}+\frac{2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)

=> \(\frac{2019+2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)

=> B < A

13 tháng 2 2022

sai rồi

a, \(\frac{15}{106}\)và \(\frac{21}{133}\)

          Ta có:

\(\frac{15}{106}< \frac{15}{100}=\frac{3}{20}=\frac{21}{140}< \frac{21}{133}\)

\(\Rightarrow\frac{15}{106}< \frac{21}{133}\)

             Vậy ........

b, \(\frac{31}{100}\)và \(\frac{89}{150}\)

       Ta có:

\(\frac{31}{100}< \frac{31}{93}=\frac{1}{3}=\frac{50}{150}< \frac{89}{150}\)

\(\Rightarrow\frac{31}{100}< \frac{89}{150}\)

        Vậy........

c, \(\frac{2020}{2019}\)và \(\frac{2021}{2020}\)

           Ta có:

\(\frac{2020}{2019}-1=\frac{1}{2019}\)     ;

\(\frac{2021}{2020}-1=\frac{1}{2020}\)

    Vì \(\frac{1}{2019}>\frac{1}{2020}\)

               \(\Rightarrow\frac{2020}{2019}-1>\frac{2021}{2020}-1\)  

              \(\Rightarrow\frac{2020}{2019}>\frac{2021}{2020}\)

 Vậy .........

d, n+2019/n+2021 và n+2020/n+2022

Câu d bn tự lm nhé

            

10 tháng 8 2019

Cảm ơn bạn nhiều lắm! THANK YOU VERY MUCH!!!!!!!!!

7 tháng 5 2023

Ta có:2019>4
=>2019/2020+2020/2021+2021/2022+2019>4
=>a>4(dpcm)

B/A

\(=\dfrac{1+\dfrac{2020}{2}+1+\dfrac{2019}{3}+...+1+\dfrac{1}{2021}+1}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}}\)

\(=\dfrac{2022\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}}=2022\)

24 tháng 5 2020

Ta có: \(\frac{2019}{2020}>\frac{2019}{2020+2021};\frac{2020}{2021}>\frac{2020}{2020+2021}\)

=> \(\frac{2019}{2020}+\frac{2020}{2021}>\frac{2019}{2020+2021}+\frac{2020}{2020+2021}=\frac{2019+2020}{2020+2021}\)

=> A > B.

18 tháng 11 2023

a/

2020.2021=(2019+1)(2022-1)=

=2019.2022-2019+2022-1=2019.2022+2>2019.2022

b/

\(4^7=\left(2^2\right)^7=2^{14}< 2^{15}\)

c/

\(199^{20}< 200^{20}=\left(8.25\right)^{20}=\left(2^3.5^2\right)^{20}=2^{60}.5^{40}\)

\(2000^{15}=\left(16.125\right)^{15}=\left(2^4.5^3\right)^{15}=2^{60}.5^{45}\)

\(\Rightarrow2000^{15}=2^{60}.5^{45}>2^{60}.5^{40}>199^{20}\)

d/

\(31^{31}< 32^{31}=\left(2^5\right)^{31}=2^{155}\)

\(17^{39}>16^{39}=\left(2^4\right)^{39}=2^{156}\)

\(\Rightarrow17^{39}=2^{156}>2^{155}>31^{31}\)

 

21 tháng 3 2020

N =2019+2020/2020+2021

=2019/2020+2021  +   2020/2020+2021

Ta có:

2019/2020>2019/2020+2021

2020/2021 > 2020/2020+2021

=>M>N

3 tháng 5 2023

B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + \(\dfrac{2022}{1}\)

B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + 2022

B = 1 + ( 1 + \(\dfrac{1}{2022}\)) + ( 1 + \(\dfrac{2}{2021}\)) + \(\left(1+\dfrac{3}{2020}\right)\)+ ... + \(\left(1+\dfrac{2021}{2}\right)\) 

B = \(\dfrac{2023}{2023}\) + \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2021}\) + \(\dfrac{2023}{2020}\) + ...+ \(\dfrac{2023}{2}\) 

B = 2023 \(\times\) ( \(\dfrac{1}{2023}\) + \(\dfrac{1}{2022}\) + \(\dfrac{1}{2021}\) + \(\dfrac{1}{2020}\)+ ... + \(\dfrac{1}{2}\))

Vậy B > C