
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Áp dụng bđt \(\sqrt[3]{a_1^3+b_1^3}+\sqrt[3]{b_1^3+b_2^3}+\sqrt[3]{a_3^3+b_3^3}\ge\sqrt[3]{\left(a_1+a_2+a_3\right)^3+\left(b_1+b_2+b_3\right)^3}\)
và bđt \(\left(a+b+c\right)^3\ge27abc\)
Ta thu đc \(M\ge\sqrt[3]{\left(x+y+z\right)^3+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^3}\ge\sqrt[3]{27abc+\frac{27}{abc}}\)
Đặt \(0< t=abc\le\left(\frac{a+b+c}{3}\right)^3\le\frac{1}{8}\)ta thu được
\(P\ge\sqrt[3]{f\left(t\right)}=\sqrt[3]{27t+\frac{27}{t}}\)
Lại có \(f\left(t\right)=27\left(64t+\frac{1}{t}-63t\right)\ge27\left(2\sqrt{64}-\frac{63}{8}\right)\)
\(\Leftrightarrow f\left(t\right)\ge27\left(16-\frac{63}{8}\right)=\frac{27.65}{8}\)
\(\Rightarrow P\ge\sqrt[3]{\frac{27.65}{8}}=\frac{3}{2}\sqrt[3]{65}\)(Đpcm !)
Nguồn : Team toán tỉnh 9B Tiên Lữ !!!!



Ta có: sinx/2-cosx/2=1/2
<=> (sinx/2-cosx/2)2=1/4
<=> 1- sinx= 1/4
<=> sinx = 3/4
=> cosx = căn7/4 hoặc cosx= -căn7/4
=> sin2x = 2sinx.cosx
=> sin2x = 3. căn7/8 hoặc sin2x=-3.căn7/8

a: Xét ΔAMB có ME là đường phân giác
nên AE/EB=AM/MB=AM/MC(4)
XétΔAMC có MD là đường phân giác
nên AD/DC=AM/MC(5)
Từ (4) và (5) suy ra AE/EB=AD/DC
b: Xét ΔABC có
AE/EB=AD/DC
nên ED//BC
Xét ΔABM có EI//BM
nên EI/BM=AE/AB(1)
Xét ΔACM có ID//MC
nên ID/MC=AD/AC(2)
Xét ΔABC có
ED//BC
nên AE/AB=AD/AC(3)
Từ (1), (2) và (3) suy ra EI/BM=DI/MC
mà BM=CM
nên EI=DI
hay I là trung điểm của ED
bạn cần có vip nhé
Olm chào em, đối với những tài khoản không phải vip của Olm thì không thể luyện lại bài tập, không thể xem hết bài giảng, đang xem sẽ bị dừng, không xem được đáp án, không nộp được bài, em nhé. Trừ khi cô giáo giao lại bài đó cho em làm lại thì được.
Để sử dụng toàn bộ học liệu của Olm thì em vui lòng kích hoạt vip olm. Quyền lợi của Olm vip là sử dụng toàn bộ học liệu của Olm từ lớp 1 đến lớp 12. Học và luyện không giới hạn bài giảng bài tập của Olm. Cùng hàng triệu đề thi thông minh, ngân hàng câu hỏi. Hỏi bài không giới hạn trên diễn đàn hỏi đáp, tương tác với giáo viên qua zalo.