Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMND vuông tại D và ΔMPE vuông tại E có
MN=MP
góc M chung
=>ΔMND=ΔMPE
b: góc MND+góc HNP=góc MNP
góc MPE+góc HPN=góc MPN
mà góc MND=góc MPE và góc MNP=góc MPN
nên góc HNP=góc HPN
=>ΔHPN cân tại H
c: HN=HP
HP>HD
=>HN>HD

Hình : tự vẽ
a) Do tam giác MNP cân tại M => MN=MP
mà PE , ND là đg cao của tam giác MNP
=> PE, ND cũng là đường trung tuyến => ME=NE=\(\frac{1}{2}\)MN
MD=DP = \(\frac{1}{2}\)MP
mà MN=MP => MD=ME
Xét tam giác MND và tam giác MBE có :
Góc A chung
MD=ME ( cm trên )
MN=MP ( do tam giác MNP cân tại M )
nên tam giác MND = tam giác MBE

Em kham khảo link này nhé.
Câu hỏi của Đào Gia Khanh - Toán lớp 7 - Học toán với OnlineMath

a: Sửa đề: ΔMNP cân tại M
a: Xét ΔMDN vuông tại D và ΔMEP vuông tại E có
MN=MP
góc DMN chung
=>ΔMDN=ΔMEP
b: góc MND+góc HNP=góc MNP
góc MPE+góc HPN=góc MPN
mà góc MND=góc MPE và góc MNP=góc MPN
nên góc HPN=góc HNP
=>ΔHNP cân tại H
c: HN=HP
HP>HD
=>HN>HD

a: Xét ΔNDP và ΔPEN có
DN=EP
góc N=góc P
NP chung
=>ΔNDP=ΔPEN
=>góc NDP=góc NEP
b: Xét ΔMEN và ΔMDP có
ME=MD
góc M chung
MN=MP
=>ΔMEN=ΔMDP
c: Xét ΔKNP có góc KNP=góc KPN
nên ΔKNP cân tại K

a. xét tg MND và tg MPD có : MD chung
^PMD = ^NMD do MD là pg của ^PMN (Gt)
MN = MP do tg MNP cân tại M (gt)
=> tg MND = tg MPD (c-g-c)
b. tg MNP cân tại A (gt) có MD là pg
=> MD đồng thời là đường cao (đl) và là trung tuyến => DN = 6
=> tg MND vuông tại D (Đn)
=> MN^2 = MD^2 + DN^2 (đl Pytago)
DN = 6; MN =10
=> MD = 8 do MD > 0
c.
1+1
e là hình chiếu của h trên mn h ở đâu hả bn