K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMND vuông tại D và ΔMPE vuông tại E có

MN=MP

góc M chung

=>ΔMND=ΔMPE

b: góc MND+góc HNP=góc MNP

góc MPE+góc HPN=góc MPN

mà góc MND=góc MPE và góc MNP=góc MPN

nên góc HNP=góc HPN

=>ΔHPN cân tại H

c: HN=HP

HP>HD

=>HN>HD

 

5 tháng 5 2019

Hình : tự vẽ

a) Do tam giác MNP cân tại M => MN=MP

         mà PE , ND là đg cao của tam giác MNP 

=> PE, ND cũng là đường trung tuyến => ME=NE=\(\frac{1}{2}\)MN

                                                                   MD=DP = \(\frac{1}{2}\)MP

mà MN=MP => MD=ME

Xét tam giác MND và tam giác MBE có :

Góc A chung 

MD=ME ( cm trên ) 

MN=MP ( do tam giác MNP cân tại M )

nên tam giác MND = tam giác MBE

              

Em kham khảo link này nhé.

Câu hỏi của Đào Gia Khanh - Toán lớp 7 - Học toán với OnlineMath

17 tháng 4 2019

link đâu ạ

a: Sửa đề: ΔMNP cân tại M

a: Xét ΔMDN vuông tại D và ΔMEP vuông tại E có

MN=MP

góc DMN chung

=>ΔMDN=ΔMEP

b: góc MND+góc HNP=góc MNP

góc MPE+góc HPN=góc MPN

mà góc MND=góc MPE và góc MNP=góc MPN

nên góc HPN=góc HNP

=>ΔHNP cân tại H

c: HN=HP

HP>HD

=>HN>HD

a: Xét ΔNDP và ΔPEN có

DN=EP

góc N=góc P

NP chung

=>ΔNDP=ΔPEN

=>góc NDP=góc NEP

b: Xét ΔMEN và ΔMDP có

ME=MD

góc M chung

MN=MP

=>ΔMEN=ΔMDP

c: Xét ΔKNP có góc KNP=góc KPN

nên ΔKNP cân tại K

26 tháng 6 2020

a. xét tg MND và tg MPD có : MD chung

^PMD = ^NMD do MD là pg của ^PMN (Gt)

MN = MP do tg MNP cân tại M (gt)

=> tg MND = tg MPD (c-g-c)

b. tg MNP cân tại A (gt) có MD là pg

=> MD đồng thời là đường cao (đl) và là trung tuyến => DN = 6

=> tg MND vuông tại D  (Đn)

=> MN^2 = MD^2 + DN^2 (đl Pytago)

DN = 6; MN =10

=> MD = 8 do MD > 0

c.

26 tháng 6 2020

kjhkmbnm,u