
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


câu 2 Gọi số học sinh nam và nữ lần lượt là a , b (a,b>0)
vì số h/s nam và h/s nữ tỉ lệ với các số 5 và 7 nên: => a/5 = b/7
vì số học sinh nữ nhiều hơn nam là 6 nên: b-a=6
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
a/5=b/7=b-a/7-5=6/2=3
Do đó : a/5=3=>a=3x5=15(h/s)
b/7=3=>b=3x7=21(h/s)
Vậy số học sinh nam và nữ của lớp đó lần lượt là 15 h/s;21h/s

TA có a // b
Mà a \(\perp\)AB
=> b \(\perp\)AB ( từ vuông góc đến song song )
Nhìn trên hình ý
Nó có kí kiệu vuông góc thy

Theo đề bài ta có: 5/4 : a/a+1 = 5/4 . a+1/ a = 5(a+1) / 4a = 5a/4a + 5/4a = a + 5/4a
Để 5/4 : a/a+1 thuộc Z => 5/4a thuộc Z= > 5 chia hết cho 4a hay 4a thuộc Ư(5)
4a thuộc { -5;-1;1;5}
a thuộc { -5/4 ; -1/4 ; 1/4; 5/4}
Mà a là số nguyên => ko có giá trị nào của a thỏa mãn đề bài

Ta có:
\(\frac{x}{2}-\frac{3}{y}=\frac{5}{4}\)
hay \(\frac{2x}{4}-\frac{3}{y}=\frac{5}{4}\)
Suy ra \(\frac{3}{y}=\frac{2x-5}{4}\)
\(\Rightarrow3\cdot4=\left(2x-5\right)y\)
hay \(\left(2x-5\right)y=12\)
Đến đây bạn tự lập bảng giá trị nhé!

b)
Ta có :
\(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)
\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)
\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)
\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)
\(\Rightarrow M>\frac{x+y+z+t}{x+y+z+t}=1\)
Lại có :
\(x< x+y+z\Rightarrow\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)
Tương tự, ta có
\(\frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\)
\(\frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}\)
\(\frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\)
\(\Rightarrow M< \frac{2\times\left(x+y+z+t\right)}{x+y+z+t}=2\)
\(\Rightarrow1< M< 2\)
\(\Rightarrow M\)không là số tự nhiên
k cho mình nha nha nha

Ta có: \(P=\frac{5}{4}:\frac{a}{a+1}=\frac{5}{4}.\frac{a+1}{a}=\frac{5a+5}{4a}\)
Nếu P nguyên thì 4P cũng nguyên, vì thế ta tìm đk để 4P nguyên, sau đó thử lại xem P có nguyên không.
\(4P=\frac{20a+20}{4a}=4a+\frac{5}{a}\)
Để 4P nguyên thì a là ước của 5. Ta có bảng:
a | 5 | 1 | -5 | -1 |
P | 3/2 | 5/2 | 1 | 0 |
Kết luận | Loại | Loại | Chọn | Chọn |
Vậy ta tìm được 2 giá trị của a là -5 và -1.

Ta có \(\frac{x}{3}=\frac{-y}{5}\)=> \(x=\frac{-3y}{5}\)
Thay \(x=\frac{-3y}{5}\)vào A, ta có:
\(\frac{5\left(\frac{-3y}{5}\right)^2+3y^2}{10\left(\frac{-3y}{5}\right)^2-3y^2}=\frac{5\left(\frac{9y^2}{25}\right)+3y^2}{10\left(\frac{9y^2}{25}\right)-3y^2}=\frac{\frac{45y^2}{25}+3y^2}{\frac{90y^2}{25}-3y^2}=\frac{\frac{45y^2+75y^2}{25}}{\frac{90y^2-75y^2}{25}}=\frac{\frac{120y^2}{25}}{\frac{25y^2}{25}}\)= \(\frac{120y^2}{25}.\frac{25}{25y^2}=\frac{120y^2}{25y^2}=4,8\)
Vậy giá trị của A là 4,8 khi \(\frac{x}{3}=\frac{-y}{5}\)

b) Ta có : \(x=2019\) \(\Rightarrow x+1=2020\) Thay vào biểu thức ta được :
( Chỗ nào có 2020 thay thành x + 1 )
\(x^9-\left(x+1\right).x^8+\left(x+1\right).x^7-....-\left(x+1\right).x^2+\left(x+1\right).x\)
\(=x^9-x^9-x^8+x^8+x^7-...-x^3-x^2+x^2+x\)
\(=x\\ \)
\(=2019\)
Vậy : biểu thức trên bằng 2019 với x = 2019.

\(3^{600};4^{400}\)
\(3^{600}=\left(3^3\right)^{200}\)
\(4^{400}=\left(4^2\right)^{200}\)
Vì : \(27^{200}>16^{200}\)
\(\Rightarrow3^{600}>4^{400}\)
Ta có:
\(3^{600}=3^{3\times200}=\left(3^3\right)^{200}=27^{200}\)
\(4^{400}=4^{2\times200}=\left(4^2\right)^{200}=16^{200}\)
Vì 27 > 16 \(\Rightarrow27^{200}>16^{200}\Leftrightarrow3^{600}>4^{400}\)
Bài nào ko cho sao bt
Bài toán nào