K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2020

\(x^2+3xy+y^2=x^2y^2^{^{\left(1\right)}}\)

\(\Leftrightarrow x^2+2xy+y^2=x^2y^2-xy\)

\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy-1\right)\)

Vì xy(xy-1) là 2 số nguyên liên tiếp có tích là 1 số chính phương 

=> xy=0 hoặc xy-1 =0 

+) Nếu xy=0 thay vào (1) ta có 

\(x^2+y^2=0\Leftrightarrow x=y=0\)

+)Nếu xy-1 =0 hay xy=1 ta có 

\(x^2+y^2+3=1\Leftrightarrow x^2+y^2=-2\left(loại\right)\)

Vậy x=0 ; y=0

5 tháng 3 2020

Đoạn số chính phương rồi suy ra xy mình chưa hiểu lắm,bạn gthich tí dc 0

27 tháng 7 2020

\(x^2+y^2+3xy=x^2y^2\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+xy=x^2y^2\)

\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy-1\right)\)

Do VT là số chính phương nên VP là số chính phương, để VP là số chính phương thì một trong 2 số bằng 0.

Dễ nhận ra x=y=0 là nghiệm cần tìm

5 tháng 4 2017

tớ không biết

5 tháng 4 2017

cj lậy chú

nhây vừa thoi

20 tháng 4 2018

a/ Đặt \(\hept{\begin{cases}\frac{x+1}{x-2}=a\\\frac{x+1}{x-4}=b\end{cases}}\) thì có

\(a^2+b-\frac{12b^2}{a^2}=0\)

\(\Leftrightarrow\left(a^2-3b\right)\left(a^2+4b\right)=0\)

b/ \(2x^2+3xy-2y^2=7\)

\(\Leftrightarrow\left(2x-y\right)\left(x+2y\right)=7\)

12 giờ trước (16:14)

Bước 1: Xét các trường hợp nhỏ

Phương trình:

\(2^{x} - 3^{y} = 1 \Rightarrow 2^{x} = 3^{y} + 1\)

Cả hai số \(2^{x}\)\(3^{y} + 1\) đều là số nguyên dương, vậy \(x \geq 1\), \(y \geq 0\).


Bước 2: Thử với các số nguyên nhỏ

  1. y = 0:

\(2^{x} = 3^{0} + 1 = 1 + 1 = 2 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x = 1\)

✅ Giải được: \(\left(\right. x , y \left.\right) = \left(\right. 1 , 0 \left.\right)\)

  1. y = 1:

\(2^{x} = 3^{1} + 1 = 4 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x = 2\)

✅ Giải được: \(\left(\right. x , y \left.\right) = \left(\right. 2 , 1 \left.\right)\)

  1. y = 2:

\(2^{x} = 3^{2} + 1 = 9 + 1 = 10 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x = \left(log ⁡\right)_{2} 10 \notin \mathbb{Z}\)

❌ Không có nghiệm nguyên

  1. y = 3:

\(2^{x} = 3^{3} + 1 = 27 + 1 = 28 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x = \left(log ⁡\right)_{2} 28 \notin \mathbb{Z}\)

❌ Không có nghiệm nguyên

  1. y = 4:

\(2^{x} = 3^{4} + 1 = 81 + 1 = 82 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x = \left(log ⁡\right)_{2} 82 \notin \mathbb{Z}\)

❌ Không có nghiệm nguyên


Bước 3: Kiểm tra tính khả thi tổng quát

  • Khi \(y \geq 3\), \(3^{y} \equiv 0 \left(\right. m o d 9 \left.\right) \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 3^{y} + 1 \equiv 1 \left(\right. m o d 9 \left.\right)\)
  • Các lũy thừa của 2: \(2^{x} m o d \textrm{ } \textrm{ } 9\) lặp theo chu kỳ: 2, 4, 8, 7, 5, 1,…
  • Xét \(2^{x} \equiv 1 \left(\right. m o d 3 \left.\right)\) hay \(2^{x} - 1 = 3^{y}\), theo định lý Catalan, nghiệm duy nhất cho phương trình lũy thừa cách nhau 1\(\left(\right. x , y \left.\right) = \left(\right. 3 , 2 \left.\right)\) cho phương trình \(3^{2} - 2^{3} = 1\), nhưng ở đây thứ tự khác nên chỉ có các nghiệm nhỏ đã tìm.

Do đó, không có nghiệm lớn hơn.


✅ Kết luận

Các nghiệm nguyên của phương trình \(2^{x} - 3^{y} = 1\) là:

\(\boxed{\left(\right. x , y \left.\right) = \left(\right. 1 , 0 \left.\right) \&\text{nbsp};\text{v} \overset{ˋ}{\text{a}} \&\text{nbsp}; \left(\right. x , y \left.\right) = \left(\right. 2 , 1 \left.\right)}\)