Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^2+3xy+y^2=x^2y^2^{^{\left(1\right)}}\)
\(\Leftrightarrow x^2+2xy+y^2=x^2y^2-xy\)
\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy-1\right)\)
Vì xy(xy-1) là 2 số nguyên liên tiếp có tích là 1 số chính phương
=> xy=0 hoặc xy-1 =0
+) Nếu xy=0 thay vào (1) ta có
\(x^2+y^2=0\Leftrightarrow x=y=0\)
+)Nếu xy-1 =0 hay xy=1 ta có
\(x^2+y^2+3=1\Leftrightarrow x^2+y^2=-2\left(loại\right)\)
Vậy x=0 ; y=0
Đoạn số chính phương rồi suy ra xy mình chưa hiểu lắm,bạn gthich tí dc 0

\(x^2+y^2+3xy=x^2y^2\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+xy=x^2y^2\)
\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy-1\right)\)
Do VT là số chính phương nên VP là số chính phương, để VP là số chính phương thì một trong 2 số bằng 0.
Dễ nhận ra x=y=0 là nghiệm cần tìm

a/ Đặt \(\hept{\begin{cases}\frac{x+1}{x-2}=a\\\frac{x+1}{x-4}=b\end{cases}}\) thì có
\(a^2+b-\frac{12b^2}{a^2}=0\)
\(\Leftrightarrow\left(a^2-3b\right)\left(a^2+4b\right)=0\)
b/ \(2x^2+3xy-2y^2=7\)
\(\Leftrightarrow\left(2x-y\right)\left(x+2y\right)=7\)

Bước 1: Xét các trường hợp nhỏ
Phương trình:
\(2^{x} - 3^{y} = 1 \Rightarrow 2^{x} = 3^{y} + 1\)
Cả hai số \(2^{x}\) và \(3^{y} + 1\) đều là số nguyên dương, vậy \(x \geq 1\), \(y \geq 0\).
Bước 2: Thử với các số nguyên nhỏ
- y = 0:
\(2^{x} = 3^{0} + 1 = 1 + 1 = 2 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x = 1\)
✅ Giải được: \(\left(\right. x , y \left.\right) = \left(\right. 1 , 0 \left.\right)\)
- y = 1:
\(2^{x} = 3^{1} + 1 = 4 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x = 2\)
✅ Giải được: \(\left(\right. x , y \left.\right) = \left(\right. 2 , 1 \left.\right)\)
- y = 2:
\(2^{x} = 3^{2} + 1 = 9 + 1 = 10 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x = \left(log \right)_{2} 10 \notin \mathbb{Z}\)
❌ Không có nghiệm nguyên
- y = 3:
\(2^{x} = 3^{3} + 1 = 27 + 1 = 28 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x = \left(log \right)_{2} 28 \notin \mathbb{Z}\)
❌ Không có nghiệm nguyên
- y = 4:
\(2^{x} = 3^{4} + 1 = 81 + 1 = 82 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x = \left(log \right)_{2} 82 \notin \mathbb{Z}\)
❌ Không có nghiệm nguyên
Bước 3: Kiểm tra tính khả thi tổng quát
- Khi \(y \geq 3\), \(3^{y} \equiv 0 \left(\right. m o d 9 \left.\right) \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 3^{y} + 1 \equiv 1 \left(\right. m o d 9 \left.\right)\)
- Các lũy thừa của 2: \(2^{x} m o d \textrm{ } \textrm{ } 9\) lặp theo chu kỳ: 2, 4, 8, 7, 5, 1,…
- Xét \(2^{x} \equiv 1 \left(\right. m o d 3 \left.\right)\) hay \(2^{x} - 1 = 3^{y}\), theo định lý Catalan, nghiệm duy nhất cho phương trình lũy thừa cách nhau 1 là \(\left(\right. x , y \left.\right) = \left(\right. 3 , 2 \left.\right)\) cho phương trình \(3^{2} - 2^{3} = 1\), nhưng ở đây thứ tự khác nên chỉ có các nghiệm nhỏ đã tìm.
Do đó, không có nghiệm lớn hơn.
✅ Kết luận
Các nghiệm nguyên của phương trình \(2^{x} - 3^{y} = 1\) là:
\(\boxed{\left(\right. x , y \left.\right) = \left(\right. 1 , 0 \left.\right) \&\text{nbsp};\text{v} \overset{ˋ}{\text{a}} \&\text{nbsp}; \left(\right. x , y \left.\right) = \left(\right. 2 , 1 \left.\right)}\)
Rcrfrvrvtvtvtvtbtvfrvftv