Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Delta'=1-\left(m-3\right)=4-m>0\Rightarrow m< 4\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m-3\end{matrix}\right.\)
Do \(x_1+x_2=2\Rightarrow x_2=2-x_1\)
Ta có:
\(x_1^2+x_1x_2=2x_2-12\)
\(\Leftrightarrow x_1\left(x_1+x_2\right)=2\left(2-x_1\right)-12\)
\(\Leftrightarrow2x_1=4-2x_1-12\)
\(\Leftrightarrow4x_1=-8\Rightarrow x_1=-2\Rightarrow x_2=4\)
Thế vào \(x_1x_2=m-3\Rightarrow m-3=-8\)
\(\Rightarrow m=-5\)

a: Thay m=-3 vào (1), ta được:
\(x^2-2x-3=0\)
=>(x-3)(x+1)=0
hay x∈{3;-1}

Bài 1 :
Để phương trình có 2 nghiệm x1 , x2
\(\Rightarrow\Delta'=\left(-1\right)^2-\left(2m-1\right)\ge0\)
\(\Rightarrow m\le1\)
\(\Rightarrow\) Khi đó phương trình có 2 nghiệm x1 , x2 thỏa mãn
\(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-1\end{cases}}\)
Mà \(3x_1+2x_2=1\Rightarrow x_1+2\left(x_1+x_2\right)=1\Rightarrow x_1+2.2=1\Rightarrow x_1=-3\)
Vì \(x_1=-3\) là 1 nghiệm của phương trình
\(\Rightarrow\left(-3\right)^2-2\left(-3\right)+2m-1=0\Rightarrow m=-7\)
Bài 2 :
\(ĐKXĐ:x\ne\pm4\)
Ta có :
\(\frac{2x-1}{x+4}-\frac{3x-1}{4-x}=5+\frac{96}{x^2-16}\)
\(\Rightarrow\frac{2x-1}{x+4}+\frac{3x-1}{x-4}=5+\frac{96}{\left(x-4\right)\left(x+4\right)}\)
\(\Rightarrow\frac{2x-1}{x+4}\left(x+4\right)\left(x-4\right)+\frac{96}{\left(x-4\right)\left(x+4\right)}\left(x+4\right)\left(x-4\right)\)
\(\Rightarrow\left(2x-1\right)\left(x-4\right)+\left(3x-1\right)\left(x+4\right)=5\left(x+4\right)\left(x-4\right)+96\)
\(\Rightarrow5x^2+2x=5x^2+16\)
\(\Rightarrow2x=16\)
\(\Rightarrow x=8\)

Phương trình hoành độ giao điểm d và (P):
\(-2x^2=x-m\Leftrightarrow2x^2+x-m=0\) (1)
(d) cắt (P) tại 2 điểm pb khi (1) có 2 nghiệm pb
\(\Leftrightarrow\Delta=1+8m>0\Leftrightarrow m< -\dfrac{1}{8}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{1}{2}\\x_1x_2=-\dfrac{m}{2}\end{matrix}\right.\)
\(x_1+x_2=x_1x_2\Leftrightarrow-\dfrac{1}{2}=-\dfrac{m}{2}\Leftrightarrow m=1\)

\(\Delta=25-4m\ge0\Rightarrow m\le\dfrac{25}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m\end{matrix}\right.\)
\(\left|x_1-x_2\right|=3\Leftrightarrow\left(x_1-x_2\right)^2=9\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=9\)
\(\Leftrightarrow25-4m=9\Rightarrow m=4\) (thỏa mãn)

\(\Delta=\left(2m+1\right)^2-4\left(m^2+m-2\right)=9>0;\forall m\)
Phương trình luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=m^2+m-2\end{matrix}\right.\)
\(x_1\left(x_1-2x_2\right)+x_2\left(x_2-2x_1\right)=9\)
\(\Leftrightarrow x_1^2+x_2^2-4x_1x_2=9\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-6x_1x_2=9\)
\(\Leftrightarrow\left(2m+1\right)^2-6\left(m^2+m-4\right)=9\)
\(\Leftrightarrow2m^2+2m-4=0\)
\(\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)
Ta có phương trình bậc hai:
\(x^{2} - 2 x + m - 3 = 0\)
Điều kiện để phương trình có hai nghiệm là Δ ≥ 0, với Δ là biệt số:
\(\Delta = \left(\right. - 2 \left.\right)^{2} - 4 \left(\right. m - 3 \left.\right) = 4 - 4 m + 12 = 16 - 4 m \geq 0\) \(\Rightarrow 16 \geq 4 m \Rightarrow m \leq 4\)
Bước 1: Biểu diễn các nghiệm x₁, x₂ theo định lý Viète
Theo định lý Viète:
\(x_{1} + x_{2} = 2 , x_{1} x_{2} = m - 3\)
Bước 2: Biến đổi hệ thức đề bài
Ta có điều kiện:
\(x_{1}^{2} - 2 x_{2} + x_{1} x_{2} = - 12\)
Thay x₁ = 2 - x₂ vào:
\(\left(\right. 2 - x_{2} \left.\right)^{2} - 2 x_{2} + \left(\right. 2 - x_{2} \left.\right) x_{2} = - 12\)
Mở rộng và thu gọn:
\(4 - 4 x_{2} + x_{2}^{2} - 2 x_{2} + 2 x_{2} - x_{2}^{2} = - 12\) \(4 - 4 x_{2} = - 12\) \(- 4 x_{2} = - 16\) \(x_{2} = 4\)
Bước 3: Tìm m
Từ x_1 + x_2 = 2, ta có:
\(x_{1} = 2 - 4 = - 2\)
Từ x_1x_2 = m - 3:
\(\left(\right. - 2 \left.\right) \left(\right. 4 \left.\right) = m - 3\) \(- 8 = m - 3\) \(m = - 5\)
Bước 4: Kiểm tra điều kiện \(m \leq 4\)
Vì \(m = - 5\) thỏa mãn \(m \leq 4\), nên đáp án cuối cùng là \(m = - 5\)