
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có: \(A=\dfrac{1}{5^2}+\dfrac{2}{5^3}+...+\dfrac{11}{5^{12}}\)
\(\Rightarrow5A=\dfrac{1}{5}+\dfrac{2}{5^2}+...+\dfrac{11}{5^{11}}\)
\(\Rightarrow5A-A=\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}\)
\(\Rightarrow4A=\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}\)
\(\Rightarrow20A=1+\dfrac{1}{5}+...+\dfrac{1}{5^{10}}-\dfrac{11}{5^{11}}\)
\(\Rightarrow20A-4A=\left(1+\dfrac{1}{5}+...+\dfrac{1}{5^{10}}-\dfrac{11}{5^{11}}\right)-\left(\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}\right)\)
\(\Rightarrow16A=1-\dfrac{12}{5^{11}}+\dfrac{11}{5^{12}}< 1\)
\(\Rightarrow A< \dfrac{1}{16}\)
⇒5A=15+252+...+11511⇒5A=15+252+...+11511
⇒5A−A=15+152+...+1511−11512⇒5A−A=15+152+...+1511−11512
⇒4A=15+152+...+1511−11512⇒4A=15+152+...+1511−11512
⇒20A=1+15+...+1510−11511⇒20A=1+15+...+1510−11511
⇒20A−4A=(1+15+...+1510−11511)−(15+152+...+1511−11512)⇒20A−4A=(1+15+...+1510−11511)−(15+152+...+1511−11512)
⇒16A=1−12511+11512<1⇒16A=1−12511+11512<1
⇒A<116⇒A<116


Câu 1:
Ta thấy:
n;(n+1);(n+2);(n+3);(n+4) là 5 số tự nhiên liên tiếp.
suy ra :sẽ có 1 số chia hết cho 5
suy ra : n(n+1)(n+2)(n+3)(n+4) chia hết cho 5 với n ∈ N
Câu 2 :
+ Gọi các ước của số tự nhiên n lần lượt là : d1;d2;d3;...;d54(với d1;d2;d3;...;d54 ∈ N* và d1 ≠ d2 ≠ d3 ≠... ≠d54.)
Ta có :
n =d1.d54 =d2.d53 =d3.d52 =... =d27.d28
⇒(d1.d54).(d2.d53).(d3.d52). ... .(d27.d28)
= n.n.n.n. ... . n(27 số n)
⇒ d1.d2.d3.d4. ... .d53 =n27
⇒ Tích các ước của n = n27

1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
Để chứng minh rằng A=n(n2+1)(n2+4) chia hết cho 5, ta cần xét các trường hợp của số dư khi n chia cho 5.
Các trường hợp của n khi chia cho 5:
Kết luận:
\(a= n(n^2+1)(n^2+4) :5\)
vì số nào cũng chia được cho 5