Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\frac{x+y}{\frac{1}{35}}=\frac{x-y}{\frac{1}{210}}=\frac{xy}{\frac{1}{12}}\left(1\right)\)
Theo t/c dãy tỉ số=nhau:
\(\frac{x+y}{\frac{1}{35}}=\frac{x-y}{\frac{1}{210}}=\frac{x+y+x-y}{\frac{1}{35}+\frac{1}{210}}=\frac{2x}{\frac{1}{30}}=2x.30=60x\left(2\right)\)
Từ (1) và (2) suy ra \(60x=\frac{xy}{\frac{1}{12}}=>\frac{60x}{xy}=\frac{1}{12}=< \frac{60}{y}=\frac{1}{12}=>y=720\)
Thay y=720 vào (1),ta có: \(\frac{x+720}{\frac{1}{35}}=\frac{x-720}{\frac{1}{210}}=>\left(x+720\right).35=\left(x-720\right).210=>35x+25200=210x-151200\)
\(=>x=1008\)
Vậy x=2008;y=720

Em tham khảo bài tại link dưới đây:
Câu hỏi của Hoàng Thị Minh Ngọc - Toán lớp 7 - Học toán với OnlineMath
+tổng của chúng là (x + y)
+hiệu của chúng là ( x-y )
+ tích của chúng là xy
Biết tổng,hiệu và tích của chúng tỉ lệ nghịch với 35, 210, và 12 ,
Tức là : 35(x + y) = 210(x - y) = 12xy
Hay:
và (x - y) : xy = 12 : 210 => 12xy = 210(x - y) => (x - y) = 2xy352xy35 (2)
Từ (1) ta có:
Từ (1) ta lại có:
Từ (2) & (3) suy ra:

\(35\left(x+y\right)=210\left(x-y\right)=12xy\)
\(\Rightarrow\)\(\frac{35\left(x+y\right)}{420}=\frac{210\left(x-y\right)}{420}=\frac{12xy}{420}\)
\(\Rightarrow\)\(\frac{x+y}{12}=\frac{x-y}{2}=\frac{xy}{35}\)( 1 )
\(\Rightarrow\)\(\frac{x+y}{12}=\frac{x-y}{2}=\frac{\left(x+y\right)+\left(x-y\right)}{12+2}=\frac{x}{7}\) ( 2 )
\(\Rightarrow\)\(\frac{x+y}{12}=\frac{x-y}{2}=\frac{\left(x+y\right)-\left(x-y\right)}{12-2}=\frac{y}{5}\) ( 3 )
Từ ( 1 ) ; ( 2 ) => x=7
Từ ( 1 ) ; ( 3 ) => y = 5
chứng minh rằng: x12-x9+x4-x+1 nhận giá trị dương với mọi x

35(x+y) = 210(x-y) = 12xy
=> 35(x+y) /420 = 210(x-y) / 420 = 12xy / 420
=> (x+y) / 12 = (x-y) / 2 = xy/35 (1)
=> (x+y) / 12 = (x-y) / 2 = (x+y+x-y)/12+2 = x/7 (2)
=> (x+y)/12 = (x-y)/2 = (x+y-x+y)/12-2 = y/5 (3)
Từ (1) và (2) = > x = 7
Từ (1) và (3) suy ra y = 5
P/s: Ủng hộ nha
Ta có tổng, hiệu ,tích tỉ lệ nghịch với 35,210,12
=> 35(x+y)=210(x-y)=12xy
=>35x+35y=210x-210y
=> 245y= 175x
=> x/y = 1,4
=> x=1,4y
=> 84y =16,8y^2
=> y= 5 ;
=> x= 7

Ta có: 35(x+y)=210(x-y)=12xy
Suy ra: x+y/12=x-y/2=xy/35
Áp dụng tính chất dãy tỉ số bằng nhau ta có
x+y/12=x-y/2=(x+y)+(x-y)/12+2=(x+y)-(x-y)/12-2=x/7=y/5
Ta lại có:
x/7=y/5=xy/35
xy/35=x/7
y=5
Suy ra: x=7

-Gọi hai số cần tìm là a,b
_Do tổng hiệu và tích ccuar chúng tỉ lệ nghịch với 35,210,12
=>35.(a+b)=210.(a-b)=12.(a.b)
=>35a+35b=210a-210b
=>35a-210a=-35b-210b
=>-175a=-245b =>a/b=-245/175=7/5
vậy a=7;b=5

Em tham khảo bài tại link dưới đây:
Câu hỏi của Hoàng Thị Minh Ngọc - Toán lớp 7 - Học toán với OnlineMath

gọi hai số dương đó là a và b
Theo bài ra : ( a + b ) , ( a - b ) , ab tỉ lệ nghịch với 35;210;12
\(\Rightarrow\)35 . ( a + b ) = 210 . ( a - b ) = 12ab
210 . ( a - b ) = 12ab ( 1 )
35 . ( a + b ) = 210 . ( a - b )
\(\Rightarrow\)35a + 35b = 210a - 210b \(\Rightarrow\)245b = 175a \(\Rightarrow\)a = \(\frac{7}{5}b\)
Thay a = \(\frac{7}{5}b\)vào ( 2 ) ta được : 210 . ( \(\frac{7}{5}b\)- b ) = 12 . \(\frac{7}{5}b\). b
210 . \(\frac{2}{5}b\)= \(\frac{84}{5}b\). b
hay \(84b=\frac{84b^2}{5}\)
\(\frac{b}{5}=1\)\(\Rightarrow b=5\)
Thay b = 5 vào ( 1 ) ta được : 210 . ( a - 5 ) = 12 . 5 . a
210a - 1050 = 60a
150a = 1050
a = 7
Vậy a = 7 ; b = 5
Chúng ta cần tìm hai số dương khác nhau \(x\) và \(y\) sao cho:
Bước 1: Biểu diễn các điều kiện
Vì các đại lượng tỉ lệ nghịch với các số đã cho, nên tồn tại một hằng số \(k\) sao cho:
\(\left(\right. x + y \left.\right) \cdot 35 = k\) \(\left(\right. x - y \left.\right) \cdot 210 = k\) \(x y \cdot 12 = k\)
Do đó, ta có hệ phương trình:
\(\left(\right. x + y \left.\right) = \frac{k}{35}\) \(\left(\right. x - y \left.\right) = \frac{k}{210}\) \(x y = \frac{k}{12}\)
Bước 2: Giải hệ phương trình
Cộng và trừ hai phương trình đầu tiên:
\(x + y = \frac{k}{35}\) \(x - y = \frac{k}{210}\)
Cộng lại:
\(2 x = \frac{k}{35} + \frac{k}{210}\) \(2 x = \frac{6 k}{210} + \frac{k}{210} = \frac{7 k}{210}\) \(x = \frac{7 k}{420} = \frac{k}{60}\)
Tương tự, trừ hai phương trình:
\(2 y = \frac{k}{35} - \frac{k}{210}\) \(2 y = \frac{6 k}{210} - \frac{k}{210} = \frac{5 k}{210}\) \(y = \frac{5 k}{420} = \frac{k}{84}\)
Từ phương trình tích:
\(\left(\right. \frac{k}{60} \left.\right) \cdot \left(\right. \frac{k}{84} \left.\right) = \frac{k}{12}\) \(\frac{k^{2}}{5040} = \frac{k}{12}\)
Nhân chéo:
\(k^{2} = \frac{5040 k}{12}\) \(k^{2} = 420 k\) \(k \left(\right. k - 420 \left.\right) = 0\)
Do \(k \neq 0\), suy ra \(k = 420\).
Bước 3: Tính giá trị của \(x\) và \(y\)
\(x = \frac{420}{60} = 7\) \(y = \frac{420}{84} = 5\)
Bước 4: Kiểm tra lại điều kiện
Vậy hai số cần tìm là \(x = 7 , y = 5\).