
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


b, xét pt hoành độ giao điểm:
-x²=4x+m
=> x²+4x+m=0
a=1. b= 4. c=m
Để pt có 2 No pb=> ∆>0
<=>4²-4×1×m>0
<=>16-4m>0
<=> -4m>-16
<=> m<16÷4=4
Vậy m=4 pt có 2No pb


Câu 5:
a: Khi m=3 thì \(f\left(x\right)=\left(2\cdot3+1\right)x-3=7x-3\)
\(f\left(-3\right)=7\cdot\left(-3\right)-3=-21-3=-24\)
\(f\left(0\right)=7\cdot0-3=-3\)
b: Thay x=2 và y=3 vào f(x)=(2m+1)x-3, ta được:
\(2\left(2m+1\right)-3=3\)
=>2(2m+1)=6
=>2m+1=3
=>2m=2
=>m=1
c: Thay m=1 vào hàm số, ta được:
\(y=\left(2\cdot1+1\right)x-3=3x-3\)
*Vẽ đồ thị
d: Để hàm số y=(2m+1)x-3 là hàm số bậc nhất thì \(2m+1\ne0\)
=>\(2m\ne-1\)
=>\(m\ne-\dfrac{1}{2}\)
e: Để đồ thị hàm số y=(2m+1)x-3 song song với đường thẳng y=5x+1 thì \(\left\{{}\begin{matrix}2m+1=5\\-3\ne1\end{matrix}\right.\)
=>2m+1=5
=>2m=4
=>m=2

\(\left|2m^2-7\right|-27=-2\)
\(\Leftrightarrow\left|2m^2-7\right|=25\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2m^2-7=25\\7-2m^2=25\left(loai\right)\end{array}\right.\)
\(\Leftrightarrow m=\pm4\)
ĐTHS trên đi qua M(1;-2) tức là \(-2=\left|2m^2-7\right|-27\Leftrightarrow\left|2m^2-7\right|=25\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2m^2-7=25\\2m^2-7=-25\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}2m^2=32\left(\text{nhận}\right)\\2m^2=-18\left(\text{loại}\right)\end{array}\right.\)\(\Leftrightarrow m^2=16\Leftrightarrow m=\pm4\)

\(\left|2m^2-7\right|-27=-2\)
\(\Rightarrow\left|2m^2-7\right|=25\)
\(\Rightarrow\left[\begin{array}{nghiempt}2m^2-7=25\\7-2m^2=25\left(loại\right)\end{array}\right.\)
\(\Rightarrow m=\pm4\)

Xét điểm \(M\left( { - 1; - 4} \right)\) ta có:
\(f\left( { - 1} \right) = 4.\left( { - 1} \right) = - 4\). Do đó, điểm \(M\left( { - 1; - 4} \right)\) thuộc vào đồ thị hàm số \(y = 4x\).
Xét điểm \(N\left( {1; - 4} \right)\) ta có:
\(f\left( 1 \right) = 4.1 = 4 \ne - 4\). Do đó, điểm \(N\left( {1; - 4} \right)\) không thuộc vào đồ thị hàm số \(y = 4x\).
Xét điểm \(P\left( {\dfrac{1}{4};1} \right)\) ta có:
\(f\left( {\dfrac{1}{4}} \right) = 4.\dfrac{1}{4} = 1\). Do đó, điểm \(P\left( {\dfrac{1}{4};1} \right)\) không thuộc vào đồ thị hàm số \(y = 4x\).

Đáp án đúng là D
+ Xét điểm \(\left( {1;1} \right)\) ta có: \(y = 2 - 4.1 = - 2 \ne 1\). Do đó, điểm \(\left( {1;1} \right)\)không thuộc đồ thị hàm số.
+ Xét điểm \(\left( {2;0} \right)\) ta có: \(y = 2 - 4.2 = - 6 \ne 2\). Do đó, điểm \(\left( {2;0} \right)\)không thuộc đồ thị hàm số.
+ Xét điểm \(\left( {1; - 1} \right)\) ta có: \(y = 2 - 4.1 = - 2 \ne - 1\). Do đó, điểm \(\left( {1; - 1} \right)\)không thuộc đồ thị hàm số.
+ Xét điểm \(\left( {1; - 2} \right)\) ta có: \(y = 2 - 4.1 = - 2\). Do đó, điểm \(\left( {1; - 2} \right)\) thuộc đồ thị hàm số.

Lời giải:
a. Vì đths đi qua $A(-2;3)$ nên:
$y_A=(2m+5)x_A-1$
$\Rightarrow 3=(2m+5)(-2)-1\Rightarrow m=\frac{-7}{2}$
b. ĐTHS sau khi tìm được $m$ có pt: $y=-2x-1$. Bạn có thể tự vẽ
c. ĐTHS cắt trục hoành tại điểm có hoành độ -3, tức là đi qua điểm $(-3,0)$
$\Rightarrow 0=(2m+5)(-3)-1$
$\Rightarrow m=\frac{-8}{3}$

a:
b: \(f\left(2\right)=\dfrac{1}{2}\cdot2=1\)
\(f\left(1\right)=\dfrac{1}{2}\cdot1=\dfrac{1}{2}\)
\(f\left(-2\right)=\dfrac{1}{2}\cdot\left(-2\right)=-1\)
\(f\left(-1\right)=\dfrac{1}{2}\cdot\left(-1\right)=-\dfrac{1}{2}\)
\(f\left(0\right)=\dfrac{1}{2}\cdot0=0\)
c: f(x)=2
=>\(\dfrac{1}{2}x=2\)
=>x=2*2=4
f(x)=1
=>\(\dfrac{1}{2}x=1\)
=>\(x=1:\dfrac{1}{2}=2\)
f(x)=-1
=>\(\dfrac{1}{2}x=-1\)
=>\(x=-1\cdot2=-2\)
d: \(f\left(-1\right)=\dfrac{1}{2}\cdot\left(-1\right)=-\dfrac{1}{2}\ne\dfrac{1}{2}=y_A\)
=>A(-1;1/2) không thuộc đồ thị hàm số y=1/2x
\(f\left(-1\right)=\dfrac{1}{2}\cdot\left(-1\right)=-\dfrac{1}{2}=y_B\)
=>\(B\left(-1;-\dfrac{1}{2}\right)\) thuộc đồ thị hàm số y=1/2x

a: Để hàm số y=(2m-1)x+m-1 nghịch biến trên R thì 2m-1<0
=>2m<1
=>\(m< \dfrac{1}{2}\)
b: Thay x=-1 và y=0 vào y=(2m-1)x+m-1, ta được:
-(2m-1)+m-1=0
=>-2m+1+m-1=0
=>-m=0
=>m=0
c: Thay x=1 và y=4 vào y=(2m-1)x+m-1, ta được:
2m-1+m-1=4
=>3m-2=4
=>3m=6
=>m=2
Khi m=2 thì \(y=\left(2\cdot2-1\right)x+2-1=3x+1\)
vẽ đồ thị:
y=3x+1
=>3x-y+1=0
Khoảng cách từ O(0;0) đến đường thẳng 3x-y+1=0 là:
\(d\left(O;3x-y+1=0\right)=\dfrac{\left|0\cdot3+0\cdot\left(-1\right)+1\right|}{\sqrt{3^2+\left(-1\right)^2}}=\dfrac{1}{\sqrt{10}}\)
Thay x=-7 và y=1 vào y=-4x-27, ta được:
\(\left(-4\right)\cdot\left(-7\right)-27=1\)
=>28-27=1
=>1=1(đúng)
=>A(-7;1) thuộc đồ thị hàm số y=-4x-27