Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^3-3x^2+3x-1=\left(x-1\right)^3\)
\(a,x=-2\Leftrightarrow A=\left(x-1\right)^3=\left(-2-1\right)^3=-3^3=-27\)
\(b,x=\frac{1}{2}\Rightarrow A=\left(x-1\right)^3=\left(\frac{1}{2}-1\right)^3=\left(-\frac{1}{2}\right)^3=-\frac{1^3}{2^3}=-\frac{1}{8}\)

\(x^2-y^2=1\)
Ta có : \(\left(\frac{x}{5}\right)^2=\left(\frac{y}{4}\right)^2\)
\(=>\frac{x^2}{25}=\frac{y^2}{16}\)
A/d dãy ............
\(\frac{x^2-y^2}{25-16}=\frac{1}{9}=>\frac{x}{5}=\frac{y}{4}=\frac{1}{3}\)
\(=>\frac{x}{5}=\frac{1}{3}=>x=\frac{5}{3}\)
\(=>\frac{y}{4}=\frac{1}{3}=>x=\frac{4}{3}\)
\(\frac{x}{5}=\frac{y}{4}\)nên \(\frac{x^2}{25}=\frac{y^2}{16}=\frac{x^2-y^2}{25-16}=\frac{1}{9}\)=> \(\frac{x}{5}=\sqrt{\frac{1}{9}};-\sqrt{\frac{1}{9}}=\frac{1}{3};\frac{-1}{3}\)
=> x = \(\frac{1}{3}.5;\frac{-1}{3}.5=\frac{5}{3};\frac{-5}{3}\)

Cho đa thức
P(x)= x mũ 2 + 2x mũ 2 +1 (1)
Thay P(-1) vào đa thức (1) , ta có :
P= \((-1)^2 +2.(-1) ^3\)
P= \(1+ (-2)\)
P= \(-1\)
Thay P(\(\dfrac{1}{2}\)) vào đa thức (1) , ta có :
\(P= (\dfrac{1}{2})^2 +2.(\dfrac{1}{2})^3\)
\(P= \dfrac{1}{4} + \dfrac{1}{4}\)
\(P=\dfrac{1}{2}\)
Q(x)=x mũ 4 +4x mũ 3 +2x mũ 2 trừ 4x+ 1. (2)
Thay Q(-2) vào đa thức (2) , ta có :
Q =\((-2)^4 +4.(-2)^3 +2.(-2)^2-4(-2)+1\)
\(Q = 16-32+8+8+1\)
\(Q= 1\)
Thay Q(1) vào đa thức (2) , ta có:
\(Q= \) \(1^4+4.1^3+2.1^2-4.1+1\)
\(Q= 1+ 4+2-4+1\)
\(Q= 4\)
Tính P(-1) ; P(1/2) ; Q(-2) ; Q(1)

bài 12 :
a,\(\left(x-\frac{1}{2}\right)^2=0\)
Mà: 02=0
=> \(\left(x-\frac{1}{2}\right)^2=0^2\)
\(\Rightarrow x-\frac{1}{2}=0\)
\(\Rightarrow x=\frac{1}{2}\)
b, \(\left(x-2\right)^2=1\)
Mà : 1=12
\(\Rightarrow\left(x-2\right)^2=1^2\)
=> x - 2 = 1
=> x = 3
c, \(\left(2x-1\right)^3=-8\)
\(\Rightarrow\left(2x-1\right)=-2\)
Vì -8 =-23
nên ...
=> 2x =-1
=> x=0.5
d.\(\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\)
cái này cũng như mấy cái trên thôi
Bài 12:
a) \(\left(x-\frac{1}{2}\right)^2=0\)
\(\Rightarrow x-\frac{1}{2}=0\)
\(x=\frac{1}{2}\)
b) \(\left(x-2\right)^2=1\)
\(x-2=\pm1\)
- Nếu \(x-2=1\)
\(x=3\)
- Nếu \(x-2=-1\)
\(x=1\)
c) \(\left(2x-1\right)^3=-8\)
\(\Rightarrow2x-1=-2\)
\(2x=-1\)
\(x=-\frac{1}{2}\)
d) \(\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\)
\(x+\frac{1}{12}=\pm\frac{1}{4}\)
- Nếu \(x+\frac{1}{12}=\frac{1}{4}\)
\(x=\frac{1}{6}\)
- Nếu \(x+\frac{1}{12}=-\frac{1}{4}\)
\(x=-\frac{1}{3}\)
Bài 13: có người làm rồi
Bài 14:
a) \(25^3\div5^2\)
\(=\left(5^2\right)^3\div5^2\)
\(=5^6\div5^2=5^4\)
b) \(\left(\frac{3}{7}\right)^{21}:\left(\frac{9}{49}\right)^6\)
\(=\left(\frac{3}{7}\right)^{21}:\left[\left(\frac{3}{7}\right)^2\right]^6\)
\(=\left(\frac{3}{7}\right)^{21}:\left(\frac{3}{7}\right)^{12}=\left(\frac{3}{7}\right)^9\)
c) \(3-\left(-\frac{6}{7}\right)^0+\left(\frac{1}{2}\right)^2:2\)
\(=3-1+\frac{1}{4}:2\)
\(=2+\frac{1}{8}=2\frac{1}{8}\)

Bài làm
1. thu gọn đa thức:
a. A(x) = x3 + x2 - 5x + 1
Thu gọn rồi nhé.
b. B(x)= -x + 4x2 - x3 -3x2 + 5
Thu gọn luôn rồi :v
Tính A(x)+B(x), tính A(x)- B(x)
A(x) + B(x) = x3 + x2 - 5x + 1 + (-x) + 4x2 - x3 -3x2 + 5
= x3 + x2 - 5x + 1 - x + 4x2 - x3 - 3x2 + 5
= ( x3 - x3 ) + ( x2 + 4x2 - 3x2 ) + ( -5x - x ) + ( 1 + 5 )
= 2x2 - 6x + 6
Vậy A(x) + B(x) = 2x2 - 6x + 6
A(x) - B(x) = x3 + x2 - 5x + 1 - [(-x) + 4x2 - x3 -3x2 + 5]
= x3 + x2 - 5x + 1 + x - 4x2 + x3 + 3x2 - 5
= ( x3 + x3 ) + ( x2 - 4x2 + 3x2 ) + ( -5x + x ) + ( 1 - 5 )
= 2x3 - 4x - 4
Vậy A(x) - B(x) = 2x3 - 4x - 4
b. Tìm x để A(x)- B(x)=0
Để A(x) - B(x) = 0
<=> 2x3 - 4x - 4 = 0
Tự giải tiếp ra nhé. Bài dài mà mình lười. thông cảm :L
2. cho A= 5x3y2, B= −15xy3z
a. tính A.B
A . B = ( 5x3y2 ) . ( -15xy3z )
A . B = -75x4y5z
Vậy A . B = -75x4y5z
b. tìm bậc của A.B
Bậc của A . B là 10
3. tìm nghiệm các đa thức:
a. A(x) = x2 - x
Để đa thức A(x) có nghiệm thì:
x2 - x = 0
=> x( x - 1 ) = 0
=> x = 0 hoặc x - 1 = 0
=> x = 0 hoặc x = 1
Vậy x = 0 hoặc x = 1 là nghiệm của đa thức A(x)
b.B(x) = x2 - 1
Để đa thức B(x) có nghiệm thì:
x2 - 1 = 0
=> x2 = 1
=> x = + 1
Vậy x = + 1 là nghiệm của đa thức B(x)
c.C(x) = x2 + 1
Để đa thức C(x) có nghiệm thì:
x2 + 1 = 0
=> x2 = -1 ( vô lí )
Vậy đa thức trên không có nghiệm.
d.D(x) = x3 - x
Để đa thức D(x) có nghiệm thì:
x3 - x = 0
=> x( x2 - 1 ) = 0
=> x = 0 hoặc x2 - 1 = 0
=> x = 0 hoặc x2 = 1
=> x = 0 hoặc x = + 1
Vậy x = 0 hoặc x = + 1 là nghiệm của đa thức D(x)

Đặt \(A=\frac15-\frac{1}{5^3}+\frac{1}{5^5}-\frac{1}{5^7}+\cdots-\frac{1}{5^{99}}\)
=>\(25A=5-\frac15+\frac{1}{5^3}-\frac{1}{5^5}+\cdots-\frac{1}{5^{97}}\)
=>\(A+25A=\frac15-\frac{1}{5^3}+\frac{1}{5^5}-\frac{1}{5^7}+\cdots-\frac{1}{5^{99}}+5-\frac15+\frac{1}{5^3}-\frac{1}{5^5}+\cdots-\frac{1}{5^{97}}\)
=>\(26A=5-\frac{1}{5^{99}}=\frac{5^{100}-1}{5^{99}}\)
=>\(A=\frac{5^{100}-1}{5^{99}\cdot26}\)

a,Ta có : \(\frac{x}{x}=\frac{4y}{7}\) => \(1=\frac{4y}{7}\)=> \(2x=\frac{4y}{7}\)=> 14x = 4y => 7x = 2y => \(\frac{x}{2}=\frac{y}{7}\)=> \(\frac{2x}{4}=\frac{y}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{4}=\frac{y}{7}=\frac{2x-y}{4-7}=\frac{3}{-3}=-1\)
=> \(\hept{\begin{cases}\frac{2x}{4}=-1\\\frac{y}{7}=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=-4\\y=-7\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-7\end{cases}}\)
b, \(\frac{x}{4}=\frac{y}{3}\)=> \(\frac{x^2}{16}=\frac{y^2}{9}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{16}=\frac{y^2}{9}=\frac{x^2-y^2}{16-9}=\frac{36}{7}\)
=> Từ đó suy ra x,y không thỏa mãn điều kiện
a. \(\frac{x}{x}=\frac{4y}{7}\)=> 4y = 7 => y = \(\frac{7}{4}\)
2x - y = 3 => 2x = \(\frac{19}{4}\) => x = \(\frac{19}{8}\)
b. Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{4}=\frac{y}{3}=\frac{x^2-y^2}{4^2-3^2}=\frac{36}{7}\)
=> x,y \(\in\varnothing\)
\(\left(\frac12^2-1\right)\left(\frac13^2-1\right)\ldots\left(\frac{1}{2025}^2-1\right)\)
\(=\left(\frac{1-4}{4}\right)\left(\frac{1-9}{9}\right)\left(\frac{1-16}{16}\right)\ldots\left(\frac{1-2025^2}{2025^2}\right)\)
\(=\frac34\times\frac89\times\frac{15}{16}\times\ldots\times\frac{\left(2024\right)^2-1}{2025^2}\)
\(=\frac{1\times3}{2\times2}\times\frac{2\times4}{3\times3}\times\frac{3\times5}{4\times4}\times\ldots\times\frac{2024\times2026}{2025^{}\times2025}\)
\(=\frac{\left(1\times2\times3\times\ldots\times2024\right)\left(2\times3\times4\times\ldots\times2026\right)}{\left(2\times3\times4\times\ldots\times2025\right)\left(2\times3\times4\times\ldots\times2025\right)}\)
\(=\frac{2026}{2025}\)