
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Olm chào em, em đã họa động rất tích cực trên Olm. Giờ em tạm xa Olm chắc chắn nhiều bạn sẽ nhớ em. Mong em luôn bình an trên con đường mà em đã chọn.

Ta có : \(\frac{1+3y}{12}=\frac{1+6y}{16}\)
<=> (1 + 3y).16 = (1 + 6y).12
<=> 16 + 48y = 12 + 72y
<=> 16 - 12 = 72y - 48y
<=> 24y = 4
=> y = 1/6
Thay y = 1/6 vào ta có : \(\frac{1+6.\frac{1}{6}}{16}=\frac{1+9.\frac{1}{6}}{4x}\Rightarrow\frac{1}{8}=\frac{\frac{5}{2}}{4x}\)
=> x = \(\frac{5}{2}:\frac{1}{8}=20\)

a, không đồng tình với ý kiến của bình vì cô giáo cũ là cô giáo đã dạy mình khi còn nhỏ . nhưng bình ko chào là thể hiện thái độ ko lễ phép , ko tôn sư trọng đạo với cô giáo cũ của bình . bình ko tôn trọng cô giáo
b, nếu là bình em sẽ dừng xe lại và chào cô
a)Em thấy bài sai sai,cô giáo cũ nghĩa là đã từng dạy mk mà sao lại có câu:cô ấy có dạy mình đâu tại sao mình lại chào hỏi.

\(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\)
\(A\times2=2+1+\frac{1}{2}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)
\(\Rightarrow A\times2-A=2-\frac{1}{2^{100}}\)
\(\Rightarrow A=2-\frac{1}{2^{100}}\)
Đặt
\(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\)
Lấy A x 2 ta được:
\(\frac{A}{2}=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}+\frac{1}{2^{101}}\)
\(\frac{A}{2}=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}+\frac{1}{2^{101}}-1\)(thêm 1 ở đầu, bớt 1 ở cuối)
\(\frac{A}{2}=A+\frac{1}{2^{101}}-1\)
\(\frac{A}{2}=1-\frac{1}{2^{101}}\)
\(A=\frac{2^{101}-1}{2^{100}}\)

a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}\)(1)
\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)(2)
Từ (1) và (2), ta có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
b) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
\(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\frac{\left[b.\left(k-1\right)\right]^2}{\left[d.\left(k-1\right)\right]^2}=\frac{b^2}{d^2}\)(1)
\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)(2)
Từ (1) và (2), ta có: \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)
a) Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)
mà \(\left(\frac{a}{c}\right)^2=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\)
\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
b) Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{a-b}{c-d}\right)^2=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
mà \(\left(\frac{a}{c}\right)^2=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\)
\(\Rightarrow\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)
Mong cô và các bạn giúp đỡ mình ạ!
chào bạn