K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2

Ta có:ˆGHF+ˆHGF=90°GHF^+HGF^=90°  (do DGHF vuông tại F) và ˆCHM+ˆCHK=90°CHM^+CHK^=90°

Mà ˆGHF=ˆCHKGHF^=CHK^   (đối đỉnh) nên ˆHGF=ˆCHMHGF^=CHM^  hay ˆHGA=ˆCHMHGA^=CHM^

Ta có: ˆBAD+ˆABD=90°BAD^+ABD^=90°  (do DABD vuông tại D);

          ˆBCF+ˆCBF=90°BCF^+CBF^=90°  (do DBCF vuông tại F)

Do đó ˆBAD=ˆBCFBAD^=BCF^  hay ˆGAH=ˆMCHGAH^=MCH^

Xét DGAH và DCHM có: ˆHGA=ˆCHMHGA^=CHM^và ˆGAH=ˆMCHGAH^=MCH^

Do đó ΔGAH ΔHCM(g.g)ΔGAH ∽ΔHCMg.g

Suy ra GHHM=AHCMGHHM=AHCM  (tỉ  số đồng dạng) (1)

Tương tự, ta có: ΔAHK ΔBMH(g.g)ΔAHK ∽ΔBMHg.g

Suy ra AHBM=HKMHAHBM=HKMH  (tỉ số đồng dạng) (2)

Mặt khác: M là trung điểm của BC nên CM = BM (3)

Từ (1), (2) và (3) ta có:GHHM=HKMHGHHM=HKMH , suy ra GH = HK.

1.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC.L là hình chiếu của H trên AK. Chứng minh các tứ giác BFLK và CELK nội tiếp 2.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C, D).Đường tròn ngoại tiếp tam giác CEK và tam giác BFK cắt nhau tại L.a) Chứng minh A, L,  K thẳng...
Đọc tiếp

1.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC.

L là hình chiếu của H trên AK. Chứng minh các tứ giác BFLK và CELK nội tiếp

 

2.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C, D).

Đường tròn ngoại tiếp tam giác CEK và tam giác BFK cắt nhau tại L.

a) Chứng minh A, L,  K thẳng hàng

 

b) Chứng minh HL vuông góc với AK

 

3. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).

Kẻ đường kính KM của đường tròn ngoại tiếp tam giác BKF và đường kính KN của đường tròn ngoại tiếp tam giác CEK.

Chứng minh M, H, K thẳng hàng

 

4. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).

Đường tròn ngoại tiếp tam giác BKF và đường tròn ngoại tiếp tam giác CEK cắt nhau tại N.

Tìm vị trí của K trên BC để BC, EF, HL đồng quy.

2
19 tháng 12 2017

Bài 1: 

A B C H F D E K L

+) Chứng minh tứ giác BFLK nội tiếp:

Ta thấy FAH và LAH  là hai tam giác vuông có chung cạnh huyền AH nên AFHL là tứ giác nội tiếp. Vậy thì \(\widehat{ALF}=\widehat{AHF}\)  (Hai góc nội tiếp cùng chắn cung AF)

Lại có \(\widehat{AHF}=\widehat{FBK}\)   (Cùng phụ với góc \(\widehat{FAH}\)  )

Vậy nên   \(\widehat{ALF}=\widehat{FBK}\), suy ra tứ giác BFLK nội tiếp (Góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện)

+) Chứng minh tứ giác CELK nội tiếp:

Hoàn toàn tương tự : Tứ giác AELH nội tiếp nên \(\widehat{ALE}=\widehat{AHE}\) , mà \(\widehat{AHE}=\widehat{ACD}\Rightarrow\widehat{ALE}=\widehat{ACD}\)

Suy ra tứ giác CELK nội tiếp.

19 tháng 12 2017

Các bài còn lại em tách ra nhé.

1.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC.L là hình chiếu của H trên AK. Chứng minh các tứ giác BFLK và CELK nội tiếp 2.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C, D).Đường tròn ngoại tiếp tam giác CEK và tam giác BFK cắt nhau tại L.a) Chứng minh A, L,  K thẳng...
Đọc tiếp

1.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC.

L là hình chiếu của H trên AK. Chứng minh các tứ giác BFLK và CELK nội tiếp

 

2.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C, D).

Đường tròn ngoại tiếp tam giác CEK và tam giác BFK cắt nhau tại L.

a) Chứng minh A, L,  K thẳng hàng

b) Chứng minh HL vuông góc với AK

 

3. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).

Kẻ đường kính KM của đường tròn ngoại tiếp tam giác BKF và đường kính KN của đường tròn ngoại tiếp tam giác CEK.

Chứng minh M, H, K thẳng hàng

 

4. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).

Đường tròn ngoại tiếp tam giác BKF và đường tròn ngoại tiếp tam giác CEK cắt nhau tại N.

Tìm vị trí của K trên BC để BC, EF, HL đồng quy.

0
20 tháng 3 2020

a, Ta co 2 bo de quen thuoc sau : FC la phan giac ^EFD, FB la phan giac PFD

ma QR//EP nen

\(\widehat{PFB}=\widehat{FQD}=\widehat{QFD}\Rightarrow\Delta DFQ\) can tai D => DF=DQ (1)

mat khac theo tinh chat tia phan giac ngoai ^PFD co \(\frac{FD}{FP}=\frac{CD}{CP}\) 

ma \(\frac{CD}{CP}=\frac{DT}{PF}\) (DT//PF)

suy ra \(\frac{DF}{PF}=\frac{DT}{PF}\Rightarrow DT=DF\) (2)

Tu(1)va (2) suy ra DT=DQ hay D la trung diem QT

b, Goi S la trung diem BC ta chung minh PQSR noi tiep 

Co \(\Delta PSE~\Delta ESD\left(G-G\right)\Rightarrow\frac{PS}{ES}=\frac{ES}{SD}\Leftrightarrow ES^2=PS.DS\)

lai co ES=SB=SC do S la trung diem canh huyen BC cua tam giac vuong BEC

suy ra \(BS^2=PS.SD=DS\left(PD+DS\right)=SD^2+PD.DS\)

=> \(PD.DS=BS^2-SD^2=\left(BS-DS\right)\left(BS+DS\right)=BD.DC\) (3)

Mat khac ^DQB=^PFB(cmt)

^PFB=^RCD( BFEC nt)

suy ra ^DQB=^RCD=> BQCR noi tiep

=> \(BD.DC=DQ.DR\) (4)

Tu (3),(4) suy ra DP.DS=DQ.DR => PQDR noi tiep 

=> (PQR) di qua S la trung diem BC co dinh

c,lay H' doi xung voi H qua BC, ta co H' thuoc (O) .

ta lai co bo de sau : \(BD.DC=DH.DA\) (quen thuoc)

suy ra \(DP.DS=DH.DA\left(=DB.DC\right)\)

<=> \(\frac{DH}{DP}=\frac{DS}{DA}\)

ma ^HDP=^SDA=90

suy ra \(\Delta DHP~\Delta DSA\left(c-g-c\right)\Rightarrow\widehat{DHP}=\widehat{DSA}\)

va \(\widehat{DSA}=\widehat{AHK}\left(phu\widehat{DAS}\right)\)

=>\(\widehat{DHP}=\widehat{AHK}\) => P,H,K thang hang

lai co \(\widehat{AFH}=\widehat{AKH}=\widehat{AEH}=90\)

=> A,F,H,K,E cung thuoc 1 duong tron =. FHKE noi tiep

=>\(PF.PE=PH.PK\) (5)

ma BFEC noi tiep => \(PF.PE=PB.PC\) (6)

(5)+(6)Suy ra \(PH.PK=PB.PC\) => BHKC noi tiep

Vi H' ,I doi xung voi H,K qua BC ma BHKC noi tiep => BH'IC noi tiep

do vay \(I\in\left(BH'C\right)=\left(ABH'C\right)=\left(O\right)\)

e,Goi tam (CJL) la U, (U) cat (O) tai V, BC giao OG tai X

=> \(\widehat{VBG}=\widehat{VJG}\left(=\widehat{VCB}\right)\) =>BJVG noi tiep

=> B,J,X,V,G cung thuoc 1 duong tron => ^BVG=^BXG=90

lai co ^XVG +^XBG=180 hay ^XVG+^BAC=180

va ^BVC+^BAC=180

suy ra ^XVG=^BVC

hay 90 +^XVB=^XVB+^XVC

=> ^XVC=90

=> V thuoc duong tron dk XC

mat khac V cung thuoc (O)

suy ra V co dinh ,C co dinh 

suy ra tam U di chuyen tren trung truc VC co dinh (dpcm)

18 tháng 3 2020

em mới lớp 5 lên ko bít bài này

 2.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C, D).Đường tròn ngoại tiếp tam giác CEK và tam giác BFK cắt nhau tại L.a) Chứng minh A, L,  K thẳng hàng b) Chứng minh HL vuông góc với AK 3. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).Kẻ đường kính KM của...
Đọc tiếp

 

2.Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C, D).

Đường tròn ngoại tiếp tam giác CEK và tam giác BFK cắt nhau tại L.

a) Chứng minh A, L,  K thẳng hàng

 

b) Chứng minh HL vuông góc với AK

 

3. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).

Kẻ đường kính KM của đường tròn ngoại tiếp tam giác BKF và đường kính KN của đường tròn ngoại tiếp tam giác CEK.

Chứng minh M, H, K thẳng hàng

 

4. Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là điểm tùy ý trên cạnh BC (K khác B, C).

Đường tròn ngoại tiếp tam giác BKF và đường tròn ngoại tiếp tam giác CEK cắt nhau tại N.

Tìm vị trí của K trên BC để BC, EF, HL đồng quy.

0
17 tháng 8 2021

A B C E F L M N K

Theo định lí Pytago 4 điểm ta có:

\(KB^2-KL^2=MB^2-ML^2\) vì \(MK\perp BL\) 

\(KC^2-KL^2=NC^2-NL^2\) vì \(NK\perp CL\)

Suy ra \(KB^2-KC^2=MB^2-NC^2+NL^2-ML^2\)

\(=\frac{1}{4}\left(BF^2-CE^2+CF^2-BE^2\right)=\frac{1}{4}\left(BC^2-BC^2\right)=0\)

Vậy \(KB=KC.\)

5 tháng 11 2023

\({}\)

a) Vì \(\widehat{BEC}=\widehat{BFC}=90^o\) nên tứ giác BEFC nội tiếp đường tròn đường kính BC. Tương tự như thế, tứ giác AEDB nội tiếp đường tròn đường kính AB. Cũng có \(\widehat{AEH}=\widehat{AFH}=90^o\) nên tứ giác AEHF nội tiếp đường tròn đường kính AH.

Ta có \(\widehat{IEM}=\widehat{IEB}+\widehat{BEM}\) 

\(=\left(90^o-\widehat{IEA}\right)+\widehat{EBC}\)

\(=90^o-\widehat{EAD}+\widehat{EBD}=90^o\) (do \(\widehat{EBD}=\widehat{EAD}\))

Vậy \(IE\perp ME\)

b) Dễ thấy các điểm I, D, E, F, M, K cùng thuộc đường tròn đường kính IM. Gọi J là trung điểm AI thì I chính là tâm của đường tròn (AIK) nên (J) tiếp xúc với (I) tại A. Dẫn đến A nằm trên trục đẳng phương của (I) và (J)

 Mặt khác, ta có \(SK.SI=SE.SF\) nên \(P_{S/\left(I\right)}=P_{S/\left(J\right)}\) hay S nằm trên trục đẳng phương của (I) và (J). Suy ra AS là trục đẳng phương của (I) và (J). \(\Rightarrow\)\(AS\perp IJ\) hay AS//BC (đpcm).

c) Ta thấy tứ giác AKEP nội tiếp đường tròn AP

\(\Rightarrow\widehat{APB}=\widehat{MKE}=\widehat{MDE}=\widehat{BAC}\)

\(\Rightarrow\Delta BAE~\Delta BPA\left(g.g\right)\Rightarrow\widehat{BAP}=\widehat{BEA}=90^o\)

\(\Rightarrow\) AP//QH \(\left(\perp AB\right)\)

\(\Rightarrow\widehat{IAP}=\widehat{IHQ}\) (2 góc so le trong)

Từ đó dễ dàng chứng minh \(\Delta IAP=\Delta IHQ\left(g.c.g\right)\) \(\Rightarrow IP=IQ\) hay I là trung điểm PQ (đpcm)