
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đẳng thức là một phát biểu toán học khẳng định rằng hai biểu thức có giá trị bằng nhau. Nó được biểu diễn bằng dấu bằng =

Với n = 0 thì \(\sqrt{1^3+2^3+3^3+..+n^3}=1+2+3+...+n\)(1)
Với n = 1 thì (1) đúng
Giả sử với n = k thì (1) đúng
Ta chứng minh với n = k + 1 thì (1) đúng
Tức là chứng minh khi \(\sqrt{1^3+2^3+3^3+...+k^3}=1+2+3+...+k\)
thì \(\sqrt{1^3+2^3+...+\left(k+1\right)^3}=1+2+3+...+k+1\)(2)
Từ (2) \(\Rightarrow1^3+2^3+3^3+...+\left(k+1\right)^3=\left(1+2+3+...+k\right)^2\)
Khi đó (1 + 2 + 3 + ... + k + 1)2 = [(k + 1)(k + 2) : 2]2 = \(\frac{\left[\left(k+1\right)\left(k+2\right)\right]^2}{4}\)(3)
Lại có \(1^3+2^3+3^3+...+k^3+\left(k+1\right)^3=\left(1+2+3+...+k\right)^2+\left(k+1\right)^3\)
\(=\frac{k^2\left(k+1\right)^2}{4}+\left(k+1\right)^3=\left(k+1\right)^2\left[\frac{k^2}{4}+k+1\right]\)
\(=\frac{\left(k+1\right)^2\left(k^2+4k+4\right)}{4}=\frac{\left(k+1\right)^2\left(k+2\right)^2}{4}=\frac{\left[\left(k+1\right)\left(k+2\right)\right]^2}{4}\)(4)
Từ (3) (4) \(\Rightarrow1^3+2^3+3^3+...+\left(k+1\right)^3=\left(1+2+3+...+k\right)^2\)
\(\Rightarrow\left(2\right)\text{đúng}\Rightarrow\text{đpcm}\)
đầu tiên ta có :
\(1+2+3+..+n=\frac{n\left(n+1\right)}{2}\) ( cái này thì dễ rồi ha)
ta sẽ chứng minh : \(1^3+2^3+..+n^3=\left[\frac{n\left(n+1\right)}{2}\right]^2\) bằng quy nạp
đẳng thức đúng với n =1
giả sử đẳng thức đúng với n=k , tức là :
\(1^3+2^3+..+k^3=\left[\frac{k\left(k+1\right)}{2}\right]^2\)
ta sẽ chứng minh đúng với n=k+1, thật vậy
ta có : \(1^3+2^3+..+k^3+\left(k+1\right)^3=\left[\frac{k\left(k+1\right)}{2}\right]^2+\left(k+1\right)^3=\left(k+1\right)^2\left[\frac{k^2}{4}+k+1\right]=\frac{\left(k+1\right)^2\left(k+2\right)^2}{4}\)
Vậy đẳng thức đúng với k+1, theo nguyên lý quy nạp ta có điều phải chứng minh

\(\left|x\right|=2\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
Khi x = 2 thì \(5x^2-2x+3x-1=5.2^2-2.2+3.2-1=20-4+6-1=21\)
Khi x = -2 thì \(5x^2-2x+3x-1=5.\left(-2\right)^2-2.\left(-2\right)+3.\left(-2\right)-1\)
\(=20+4-6-1=17\)

a;
M + (5\(x^2\) - 2\(xy\)) = 8\(x^2\) - 7\(xy\) - 5y\(^2\)
M = 8\(x^2\) - 7\(xy\) - 5y\(^2\) -(5\(x^2\) - 2\(xy\))
M = 8\(x^2\) - 7\(xy\) - 5y\(^2\) - 5\(x^2\) + 2\(xy\)
M = (8\(x^2\) - 5\(x^2\)) - (7\(xy\) - 2\(xy\)) - 5y\(^2\)
M = 3\(x^2\) - 5\(xy\) - 5y\(^2\)
Câu b:
(15\(xy\) - 3\(x^2y\) + 1) - M = 2\(x^2y\) - 15\(xy\) + \(x-2\)
M = (15\(xy\) - 3\(x^2y\) + 1) - (2\(x^2y\) - 15\(xy\) + \(x-2\))
M = 15\(xy\) - 3\(x^2y\) + 1- 2\(x^2y\) + 15\(xy\) - \(x+2\)
M = -(3\(x^2y\) + 2\(x^2y\)) + (15\(xy\) + 15\(xy\)) - \(x\) + (1+ 2)
M = - 5\(x^2y\) + 30\(xy\) - \(x\) + 3

\(M=5ax^2y^2+\left(-\frac{1}{2}ax^2y^2\right)+7ax^2y^2+\left(-ax^2y^2\right)\)
\(M=\left(5a+\left(-\frac{1}{2}a\right)+7a+\left(-a\right)\right)x^2y^2\)
\(M=-\frac{23}{2}ax^2y^2\)
a) Ta có : \(x^2y^2=\left(xy\right)^2\)luôn dương với mọi x và y ( vì có số mũ chẵn )
Để M < 0 => \(-\frac{23}{2}a\)âm
\(-\frac{23}{2}\) mang dấu ( - ) mà \(-\frac{23}{2}a\)âm => a dương => a > 0
Vậy a > 0 thì M < 0 với mọi x và y
b) Từ ý a) ta có M < 0 khi a > 0
mà a = 2 => a > 0
=> M < 0
=> \(M\ne84\)
=> Không có cặp (x,y) thỏa mãn đề bài
* K chắc nha *

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
Ta có:
\(\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7b^2k^2+3\cdot bk\cdot b}{11b^2k^2-8b^2}=\frac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\frac{7k^2+3k}{11k^2-8}\left(1\right)\)
\(\frac{7c^2+3cd}{11c^2-8d^2}=\frac{7d^2k^2+3dk\cdot d}{11d^2k^2-8d^2}=\frac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}=\frac{7k^2+3k}{11k^2-8}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrowđpcm\)
Mấy bài khác tương tự
14
14 bn ạ