K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Thay m=4 vào phương trình, ta được:

\(x^2-3x-4\cdot4-2=0\)

=>\(x^2-3x-18=0\)

=>(x-6)(x+3)=0

=>\(\left[{}\begin{matrix}x-6=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-3\end{matrix}\right.\)

2: \(\Delta=\left(-3\right)^2-4\cdot1\cdot\left(-4m-2\right)=9+16m+8=16m+17\)

Để phương trình có hai nghiệm thì 16m+17>=0

=>16m>=-17

=>\(m>=-\dfrac{17}{16}\)

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=3\\x_1x_2=\dfrac{c}{a}=-4m-2\end{matrix}\right.\)

\(2x_1^3=x_1^2x_2+3\left(x_2-2x_1\right)\)

=>\(2x_1^3=x_1^2\left(3-x_1\right)+3\left(3-x_1-2x_1\right)\)

=>\(2x_1^3=3x_1^2-x_1^3+9-9x_1\)

=>\(3x_1^3-3x_1^2+9x_1-9=0\)

=>\(\left(x_1-1\right)\left(3x_1^2+9\right)=0\)

=>\(x_1-1=0\)

=>\(x_1=1\)

\(x_2=3-x_1=3-1=2\)

\(x_1x_2=-4m-2\)

=>-4m-2=2

=>-4m=4

=>m=-1(nhận)

21 tháng 5

Bài 2. Cho phương trình

\(& x^{2} - 3 x - 4 m - 2 = 0 & & (\text{1})\)

với ẩn \(x\) và tham số \(m\).


1) Giải phương trình khi \(m = 4\)

Khi \(m = 4\), (1) trở thành

\(x^{2} - 3 x - 4 \cdot 4 - 2 = x^{2} - 3 x - 18 = 0.\)

Áp dụng công thức nghiệm:

\(x = \frac{3 \pm \sqrt{\left(\right. - 3 \left.\right)^{2} - 4 \cdot 1 \cdot \left(\right. - 18 \left.\right)}}{2} = \frac{3 \pm \sqrt{9 + 72}}{2} = \frac{3 \pm 9}{2} ,\)

suy ra

\(\boxed{x_{1} = 6 , x_{2} = - 3.}\)


2) Tìm \(m\) để nghiệm \(x_{1} , x_{2}\) thỏa

\(2 x_{1}^{3} \textrm{ }\textrm{ } = \textrm{ }\textrm{ } x_{1}^{2} x_{2} \textrm{ }\textrm{ } + \textrm{ }\textrm{ } 3 \textrm{ } \left(\right. x_{2} - 2 x_{1} \left.\right) .\)

Với (1) nói chung, tổng và tích hai nghiệm là

\(S = x_{1} + x_{2} = 3 , P = x_{1} x_{2} = - 4 m - 2.\)

Ta đặt \(x_{2} = 3 - x_{1}\) rồi thế vào đẳng thức cần tìm:

\(2 x_{1}^{3} = x_{1}^{2} \left(\right. 3 - x_{1} \left.\right) \textrm{ }\textrm{ } + \textrm{ }\textrm{ } 3 \left(\right. \left(\right. 3 - x_{1} \left.\right) - 2 x_{1} \left.\right) = 3 x_{1}^{2} - x_{1}^{3} + 9 - 9 x_{1} .\)

Chuyển vế:

\(2 x_{1}^{3} + x_{1}^{3} - 3 x_{1}^{2} + 9 x_{1} - 9 = 0 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } 3 \left(\right. x_{1}^{3} - x_{1}^{2} + 3 x_{1} - 3 \left.\right) = 0 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } \left(\right. x_{1} - 1 \left.\right) \left(\right. x_{1}^{2} + 3 \left.\right) = 0.\)

Trong thực, chỉ có \(x_{1} = 1\). Khi đó \(x_{2} = 3 - 1 = 2\), và

\(P = x_{1} x_{2} = 1 \cdot 2 = 2.\)

Nhưng \(P = - 4 m - 2\), nên

\(- 4 m - 2 = 2 \Longrightarrow m = - 1.\)

Vậy phương trình có hai nghiệm thỏa điều kiện đã cho chỉ khi

\(\boxed{m = - 1.}\)

QT
Quoc Tran Anh Le
Giáo viên
28 tháng 8

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=36+64=100=10^2\)

=>BC=10(cm)

Xét ΔABC vuông tại A có \(\sin C=\frac{AB}{BC}=\frac{6}{10}=\frac35\)

nên \(\hat{C}\) ≃37 độ

ΔABC vuông tại A

=>\(\hat{B}+\hat{C}=90^0\)

=>\(\hat{B}=90^0-37^0=53^0\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\left(1\right)\)

Xét ΔABD vuông tại A có AK là đường cao

nên \(BK\cdot BD=BA^2\left(2\right)\)

Từ (1),(2) suy ra \(BH\cdot BC=BK\cdot BD\)

c: \(BH\cdot BC=BD\cdot BK\)

=>\(\frac{BH}{BK}=\frac{BD}{BC}\)

=>\(\frac{BH}{BD}=\frac{BK}{BC}\)

Xét ΔBHK và ΔBDC có

\(\frac{BH}{BD}=\frac{BK}{BC}\)

góc HBK chung

Do đó: ΔBHK~ΔBDC
=>\(\hat{BKH}=\hat{BCD}=\hat{ACB}\)

a: ta có: AH⊥CD
OM⊥CD

BK⊥CD

Do đó: AH//OM//BK

Xét ΔAKB có

O là trung điểm của AB

ON//KB

DO đó: N là trung điểm của AK

=>AN=NK

b: Xét hình thang ABKH có

O là trung điểm của AB

OM//AH//BK

Do đó: M là trung điểm của HK

=>MH=MK

c: ΔOCD cân tại O

mà OM là đường cao

nên M là trung điểm của CD

Ta có: MC+CH=MH

MD+DK=MK

mà MC=MD và MH=MK

nên CH=DK

QT
Quoc Tran Anh Le
Giáo viên
28 tháng 8

Bài 4:

a: ΔCAB vuông tại C

=>\(\hat{CAB}+\hat{CBA}=90^0\)

=>\(\hat{CBA}=90^0-70^0=20^0\)

Xét ΔCBA vuông tại C có \(\sin CBA=\frac{CA}{AB}\)

=>\(CA=AB\cdot\sin CBA=10\cdot\sin20\) ≃3,4(dm)

ΔCAB vuông tại C

=>\(CA^2+CB^2=AB^2\)

=>\(CB^2=AB^2-CA^2\)

=>\(CB=\sqrt{AB^2-AC^2}\) ≃9,4(dm)

b: Xét ΔABC vuông tại C có \(cosA=\frac{CA}{AB}\)

Xét ΔCHA vuông tại H có \(cosA=\frac{AH}{AC}\)

Xét ΔCHB vuông tại H có \(\sin B=\frac{CH}{CB}\)

Xét ΔCAB vuông tại C có \(\sin B=\frac{AC}{AB}\)

\(\sin B\cdot cosA=\frac{AC}{AB}\cdot\frac{AH}{AC}=\frac{AH}{AB}\)

Bài 5:

Xét ΔMAB có \(\hat{MBH}\) là góc ngoài tại đỉnh B

nên \(\hat{MBH}=\hat{A}+\hat{BMA}\)

=>\(\hat{BMA}=39^0-18^0=21^0\)

Xét ΔMAB có \(\frac{AB}{\sin AMB}=\frac{MB}{\sin A}\)

=>\(\frac{MB}{\sin18}=\frac{80}{\sin21}\)

=>\(MB=80\cdot\frac{\sin18}{\sin21}\) ≃69(m)

Xét ΔMHB vuông tại H có \(\sin HBM=\frac{HM}{MB}\)

=>\(HM=MB\cdot\sin HBM\) ≃69*sin39≃43,4(m)

=>Chiều cao của ngọn hải đăng là khoảng 43,4 mét

15 tháng 8

em cảm ơn a nhiều ạ

Xét ΔAHC vuông tại H có \(\sin C=\frac{AH}{AC}\)

=>\(\frac{AH}{10}=\sin30=\frac12\)

=>\(AH=\frac{10}{2}=5\left(\operatorname{cm}\right)\)

ΔAHC vuông tại H

=>\(HA^2+HC^2=CA^2\)

=>\(HC^2=10^2-5^2=100-25=75=\left(5\sqrt3\right)^2\)

=>\(HC=5\sqrt3\left(\operatorname{cm}\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(HB\cdot HC=HA^2\)

=>\(HB=\frac{5^2}{5\sqrt3}=\frac{5}{\sqrt3}=\frac{5\sqrt3}{3}\) (cm)

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(AB^2=5^2+\left(\frac{5\sqrt3}{3}\right)^2=25+\frac{25}{3}=\frac{100}{3}\)

=>\(AB=\sqrt{\frac{100}{3}}=\frac{10}{\sqrt3}\) (cm)