K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác BCNP có \(\widehat{BPC}=\widehat{BNC}=90^0\)

nên BCNP là tứ giác nội tiếp đường tròn đường kính BC

b: Xét (I) có \(\widehat{PCN}\) là góc nội tiếp chắn cung PN

nên \(\widehat{PIN}=2\cdot\widehat{PCN}\)

c: ΔAPC vuông tại P

=>\(\widehat{PAC}+\widehat{PCA}=90^0\)

=>\(\widehat{PCA}=90^0-60^0=30^0\)

\(\widehat{PIN}=2\cdot30^0=60^0\)

Xét ΔPIN có IP=IN và \(\widehat{PIN}=60^0\)

nen ΔPIN đều

7 tháng 11 2017
 
 
7 tháng 11 2017

Ý xin lỗi.Mình lộn đề

25 tháng 5 2016

Cho tam giác ABC có 3 góc nhọn (AB<AC) nội tiếp đường tròn tâm O. Kẻ đường cao AH của tam giác và đường kính AD của đường tròn (O). Gọi E,F lần lượt là chân đường vuông góc kẻ từ C và B xuống đường thẳng AD. Gọi M là trung điểm ÁD

a) Chứng minh tứ giác BMFO nội tiếp

b) chứng minh HE//BD

c) Chứng minh $S=\frac{AB.AC.BC}{4R}$S=AB.AC.BC4R     ( Với S là diện tích tam giác ABC, R là bán kính đường tròn (O) )

Chịu @ _@

14 tháng 10 2018

Sửa lại nha: Chứng minh rằng DB^2/DC^2=BF.BE/CF.CE

21 tháng 6 2021

A B C E F N M O D G

1. Vì \(\widehat{ADB}=\widehat{AEB}=90^0\) nên tứ giác AEBD nội tiếp đường tròn đường kính AB.

2. Tứ giác AEBD, AFCD nội tiếp và BE, CF tiếp xúc (O), suy ra:

\(\widehat{AED}=\widehat{ABC}=\widehat{ACF}=\widehat{ADF};\widehat{AFD}=\widehat{ADE}\)

Do đó \(\Delta\)EAD ~ \(\Delta\)DAF, suy ra \(AD^2=AE.AF\)

3. Ta có \(AE.AF=\left(AM+AN\right)^2=\frac{\left(AE+AF\right)^2}{4}\Leftrightarrow\left(AE-AF\right)^2=0\Leftrightarrow AE=AF\)

Từ đó \(\Delta\)AEG = \(\Delta\)AFG (Cạnh huyền.Cạnh góc vuông), suy ra GA là phân giác góc BGC

Mà \(\Delta\)GBC cân tại G nên GA là trung trực BC hay \(\Delta\)ABC cân tại A

Vậy đường cao AD trùng với AO hay A,O,D thẳng hàng.

12 tháng 5 2019

\(\text{hình bn tự vẽ nha!! }\)

\(a,\text{Xét tứ giác AMHN ta có: }\)

 \(\hept{\begin{cases}\widehat{ANH}=90\\\widehat{AMH}=90\end{cases}}\)Mà trong tứ giác AMHN 2 góc đó là 2 góc đối nhau 

=> \(\widehat{ANH}+\widehat{AMH}=90+90=180\)

=> Tứ giác AMHN nội tiếp 

22 tháng 8 2021

a) Ta có tứ giác AIMJ là hcn=> AIMJ nội tiếp đường tròn đường kính AM,  IJ

Vì N đối xứng với M qua IJ => góc JNI = góc JMI = 90o ha N thuộc đường tròn đường kính AM và IJ => góc ANM = 90o 

mà I thuộc trung trực MN => tam giác MIC vuông cân tại I =>  I thuộc trung trực MC

=> I là tâm đường tròn ngoại tiếp tam giác MNC

=> góc MNC =1/2 góc MIC = 450 

=> góc ABC + góc ANC = 45+90+45=1800

Hay tứ giác ABCN nội tiếp đường tròn (T) (ĐPCM)

22 tháng 8 2021

b)CM: 1/PM<1/PB+1/PC ?

Ta có: tam giác MPC đồng dạng tam giác MBA => PM/MB=PC/BA => PM/PC=MB/BA (1)

TAM GIÁC MBP đồng dạng tam giác MAC => PM/MC=PB/CA=> PM/PB=MC/AC      (2)

Cộng vế theo về của (1) và (2) ta có:

PM/PC+PM/PB=MB/BC+MC/AC=MB/BA+MC/BA=AC/BA>1 => ĐPCM

c) Áp dụng hệ thức giữa cạnh và đường cao ta có:

DH2=DK.DC => DA2=DK.DC

=> DA/DC=DK/DA => TAM GIÁC DKA đồng dạng tam giác DAC => góc AKD =DAC =45o

=> góc ABH+ góc AKH = 45+45+90=1800=> TỨ GIÁC ABHK nội tiếp

=> Góc AKB =AHB =90 = GÓC HKC 

Mà góc ABK =AHK=KCH => đpcm