K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2

Theo định lý viet \(\begin{cases}x_1+x_2=4\\ x_1x_2=6-m\end{cases}\)

Phương trình cho có 2 nghiệm phân biệt khi

\(\Delta^{\prime}=4-6+m>0\)

\(\rArr m>2\left(1\right)\)

Ta có \(x_1^2+24=4x_2-x_1x_2\)

\(x_1+x_2=4\rArr x_2=4-x_1\)

\(\rArr x_1^2+24=4\left(4_{}-x_1\right)-x_1\left(4_{}-x_1\right)\)

\(\rArr x_1^2+24=x_1^2-8x_1+16\)

\(\rArr x_1=-1\)

\(\rArr x_2=4+1=5\)

\(\rArr x_1x_2=6-m=\left(-1\right).5=-5\)

\(\rArr m=11\) thỏa \(\left(1\right)\)

Vậy với \(m=11\) thỏa mãn yêu cầu đề bài

AH
Akai Haruma
Giáo viên
23 tháng 5 2021

Không tồn tại giá trị nào của $m$ thỏa mãn, vì $x_1^2+x_2^2+2019\geq 2019>0$ với mọi $m\in\mathbb{R}$

27 tháng 4 2020

Câu a ) 

\(2x^4+3x^2-2=0\left(1\right)\)

Đặt \(t=x^2\left(t\ge0\right)\) phương trình (1) trở thành:

\(2t^2+3t-2=0\)

\(\Leftrightarrow t\left(2t-1\right)+4t-2=0\)

\(\Leftrightarrow t\left(2t-1\right)+2\left(2t-1\right)=0\)

\(\Leftrightarrow\left(2t-1\right)\left(t+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2t-1=0\\t+2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}t=\frac{1}{2}\\1=-2\left(loại\right)\end{cases}}\)

Với \(t=\frac{1}{2}\Leftrightarrow x^2=\frac{1}{2}\Rightarrow x=\pm\frac{\sqrt{2}}{2}\)

Vậy tập nghiệm của phương trình là  \(S=\left\{\pm\frac{\sqrt{2}}{2}\right\}\)

 
27 tháng 4 2020

Câu b ) 

\(\Delta=\left(m+1\right)^2-4m=m^2-2m+1=\left(m-1\right)^2\)

\(\Delta>0\Leftrightarrow\left(m-1\right)^2>0\Leftrightarrow m\ne1\)

\(\hept{\begin{cases}x_1+x_2=m+1\\x_1x_2=m\end{cases}}\)

\(x_1=3x_2\Rightarrow3x_2+x_2=m+1\Leftrightarrow4x_2=m+1\)

\(\Leftrightarrow x_2=\frac{m+1}{4}\Rightarrow x_1=\frac{3\left(m+1\right)}{4}\)

\(x_1x_2=m\Leftrightarrow\frac{3\left(m+1\right)^2}{16}=m\)

\(\Leftrightarrow3m^2+6m+3=16m\)

\(\Leftrightarrow3m^2-10m+3=0\)

\(\Leftrightarrow\left(3m-1\right)\left(m-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=\frac{1}{3}\\m=3\end{cases}\left(tm\right)}\)

Δ=(2m-2)^2-4(-2m+5)

=4m^2-8m+4+8m-20=4m^2-16

Để PT có hai nghiệm phân biệt thì 4m^2-16>0

=>m>2 hoặc m<-2

x1-x2=-2

=>(x1-x2)^2=4

=>(x1+x2)^2-4x1x2=4

=>(2m-2)^2-4(-2m+5)=4

=>4m^2-8m+4+8m-20=4

=>4m^2=20

=>m^2=5

=>m=căn 5 hoặc m=-căn 5

NV
24 tháng 3 2021

\(ac=-6< 0\Rightarrow\) phương trình đã cho luôn luôn có 2 nghiệm pb (trái dấu)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-2\\x_1x_2=-6\end{matrix}\right.\)

Thế vào đề bài:

\(m-2-3\left(-6\right)=0\)

\(\Leftrightarrow m+16=0\Leftrightarrow m=-16\)

24 tháng 3 2021

Thầy phân tích cho e kĩ hơn ở p [ac=-6] đc ko ạ. Tại sao mk ko tính Δ= [m^2-4m+28 kết quả tính đc] mà p làm như thế ạ

bạn xem lại biểu thức trong đề bài 

10 tháng 6 2016

Bài 1. Phương trình \(x^2-\left(m+5\right)x+3m+6=0\)

a. \(\Delta=\left(m+5\right)^2-4\left(3m+6\right)=m^2-2m+1=\left(m+1\right)^2\ge0\)

Vậy phương trình luôn có nghiệm.

b. Gọi các nghiệm của phương trình là \(x_1;x_2\). Để các nghiệm của phương trình là độ dài của các cạnh góc vuông của tam giác vuông có độ dài cạnh huyền là 5 thì \(x_1^2+x_2^2=25\)

Theo Viet ta có \(\hept{\begin{cases}x_1+x_2=m+5\\x_1.x_2=3m+6\end{cases}}\)

 \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(m+5\right)^2-2\left(3m+6\right)=m^2+4m+13=25\)

\(\Rightarrow m^2+4m-12=0\Rightarrow\orbr{\begin{cases}m=2\\m=-6\end{cases}}\)

Bài 2.

a. Để hai đồ thị có 1 điểm chung thì phương trình hoành độ giao điểm có 1 nghiệm duy nhất. 

Xét phương trình hoành độ giao điểm: \(-x^2=4x-m\Leftrightarrow x^2+4x-m=0\)

Để phương trình có 1 nghiệm duy nhất thì \(\Delta'=0\Leftrightarrow2^2+m=0\Leftrightarrow m=-4\)

Bài 3. Phương trình \(x^2-5x+3m+1=0\)

Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\Leftrightarrow\left(-5\right)^2-4\left(3m+1\right)=21-12m>0\Leftrightarrow m< \frac{7}{4}\)

Theo Viet \(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=3m+1\end{cases}}\)

Vậy \(\left|x_1^2-x_2^2\right|=15\Leftrightarrow\left(x_1+x_2\right)^2\left(x_1-x_2\right)^2=225\Leftrightarrow\left(x_1+x_2\right)^2\left[\left(x_1+x_2\right)^2-4x_1x_2\right]=225\)

\(\Leftrightarrow25\left[25-4\left(3m+1\right)\right]=225\Leftrightarrow21-12m=9\Leftrightarrow m=1\left(tmđk\right)\)

Vậy m = 1.

Chú ý nhớ kĩ định lý Viet nhé, đây là một phần quan trọng đó em.