Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
ĐKXĐ: x>=3
\(PT\Leftrightarrow\sqrt{x-3}=2x-m\)
=>x-3=(2x-m)^2
=>4x^2-4xm+m^2=x-3
=>4x^2-x(4m-1)+m^2+3=0
Δ=(4m-1)^2-4*4*(m^2+3)
=16m^2-8m+1-16m^2-48
=-8m-47
Để phương trình có nghiệm thì -8m-47>=0
=>m<=-47/8
\(m=1\) pt có nghiệm \(x=-\frac{2}{3}\)
Với \(m\ne1\Rightarrow\Delta'=\left(2m+1\right)^2-\left(1-m\right)\left(3m+1\right)=7m^2+2m\)
a/ Để pt \(f\left(x\right)=0\) vô nghiệm
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\7m^2+2m< 0\end{matrix}\right.\) \(\Rightarrow-\frac{2}{7}< m< 0\)
b/Để \(f\left(x\right)< 0\) vô nghiệm \(\Leftrightarrow f\left(x\right)\ge0\) đúng với mọi x
\(\Leftrightarrow\left\{{}\begin{matrix}1-m>0\\7m^2+2m\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< 1\\-\frac{2}{7}\le m\le0\end{matrix}\right.\) \(\Rightarrow-\frac{2}{7}\le m\le0\)
c/ Để \(f\left(x\right)\le0\) có vô số nghiệm
\(\Leftrightarrow\left[{}\begin{matrix}m=1\\7m^2+2m>0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m=1\\\left[{}\begin{matrix}m< -\frac{2}{7}\\m>0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m< -\frac{2}{7}\\m>0\end{matrix}\right.\)
Lưu ý: phân biệt bất phương trình có vô số nghiệm và nghiệm đúng với mọi x. Muốn vô số nghiệm thì chỉ cần BPT có 1 khoảng nghiệm nào đó là đủ.
g/
\(\left\{{}\begin{matrix}m-2\ne0\\\Delta'=\left(m-2\right)^2-\left(m-2\right)\ge0\\\frac{1}{m-2}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\\left(m-2\right)\left(m-3\right)\ge0\\m>2\end{matrix}\right.\)
\(\Rightarrow m\ge3\)
h/
\(\left\{{}\begin{matrix}m-2\ne0\\\Delta'=\left(2m-3\right)^2-\left(m-2\right)\left(5m-6\right)\ge0\\\frac{5m-6}{m-2}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\-m^2+4m-3\ge0\\\left[{}\begin{matrix}m>2\\m< \frac{6}{5}\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}1\le m< \frac{6}{5}\\2< m\le3\end{matrix}\right.\)
d/
\(\left\{{}\begin{matrix}\Delta'=4\left(2m-1\right)^2-4m\ge0\\\frac{m}{4}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4m^2-5m+1\ge0\\m>0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}0< m< \frac{1}{4}\\m>1\end{matrix}\right.\)
e/
\(\left\{{}\begin{matrix}\Delta=\left(m+1\right)^2-4\left(m-1\right)\ge0\\m-1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-2m+5\ge0\\m>1\end{matrix}\right.\) \(\Rightarrow m>1\)
f/
\(\left\{{}\begin{matrix}\Delta'=\left(m-1\right)^2-4\left(m-1\right)\ge0\\\frac{m-1}{4}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-6m+5\ge0\\m>1\end{matrix}\right.\) \(\Rightarrow m\ge5\)
Câu 1:
\(a=3>0\)
\(\Delta'=\left(m+5\right)^2-3\left(-m^2+2m+8\right)=\left(2m+1\right)^2\)
TH1: \(\Delta'=0\Rightarrow m=-\frac{1}{2}\)
TH2: \(\left\{{}\begin{matrix}\Delta'>0\\x_1\le-1< 1\le x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne\frac{1}{2}\\f\left(-1\right)\le0\\f\left(1\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne\frac{1}{2}\\-m^2+4m+21\le0\\-m^2+1\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne\frac{1}{2}\\\left[{}\begin{matrix}m\le-3\\m\ge7\end{matrix}\right.\\\left[{}\begin{matrix}m\le-1\\m\ge1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m\le-3\\m\ge7\end{matrix}\right.\)
Câu 2:
- Với \(m=-1\Rightarrow6x+6< 0\Rightarrow x< -1\)
- Với \(m\ne-1\)
\(\Delta'=\left(2m-1\right)^2+\left(m+1\right)\left(4m-2\right)=8m^2-2m-1\)
TH1: \(m>-1\)
+ Nếu \(\Delta\le0\Leftrightarrow-\frac{1}{4}\le m\le\frac{1}{2}\Rightarrow\) BPT vô nghiệm
+ Nếu \(\Delta>0\Leftrightarrow\left[{}\begin{matrix}-1< m< -\frac{1}{4}\\m>\frac{1}{2}\end{matrix}\right.\)
BPT có nghiệm: \(\frac{2m-1-\sqrt{\Delta}}{m+1}< x< \frac{2m-1+\sqrt{\Delta}}{m+1}\)
TH2: \(m< -1\)
\(\Rightarrow\Delta=8m^2-2m-1>0\)
\(\Rightarrow\) BPT có nghiệm: \(\left[{}\begin{matrix}x>\frac{2m-1-\sqrt{\Delta}}{m+1}\\x< \frac{2m+1+\sqrt{\Delta}}{m+1}\end{matrix}\right.\)
1, BPT đúng với mọi x thuộc R khi vầ chỉ khi:
\(\left\{{}\begin{matrix}a>0\\\Delta\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a>0\\1-4a^2\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a>0\\a\le\frac{-1}{2};a\ge\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow a\ge\frac{1}{2}\)
2, điều kiện: \(\Delta< 0\\ \Leftrightarrow\left(m+2\right)^2+8\left(m-4\right)< 0\\ \Leftrightarrow m^2+12m-28< 0\\ \Leftrightarrow-14< m< 2\)
3, điều kiện: \(\Delta'< 0\\ \Leftrightarrow\left(2m-3\right)^2-\left(4m-3\right)< 0\\ \Leftrightarrow m^2-4m+3< 0\\ \Leftrightarrow1< m< 3\)
4, Nếu m=0 => f(x)=-2x-1<0 (loại)
Nếu m≠0 để f(x)<0 với ∀x ϵ R khi và chỉ khi:
\(\left\{{}\begin{matrix}m< 0\\\Delta'< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 0\\1+m< 0\end{matrix}\right.\)
\(\Rightarrow m< -1\)
d/
\(\left\{{}\begin{matrix}m\ne0\\\Delta'=\left(m-1\right)^2-m\left(m-3\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m+1< 0\end{matrix}\right.\)
\(\Rightarrow m< -1\)
e/
\(\Delta=\left(m+1\right)^2-4\left(m-1\right)< 0\)
\(\Leftrightarrow m^2-2m+5< 0\)
\(\Leftrightarrow\left(m-1\right)^2+4< 0\)
Không tồn tại m thỏa mãn
f/
\(m=1\) pt vô nghiệm (thỏa mãn)
Với \(m\ne1\)
\(\Delta'=\left(m-1\right)^2+\left(m-1\right)< 0\)
\(\Leftrightarrow m\left(m-1\right)< 0\Rightarrow0< m< 1\)
Vậy \(0< m\le1\)