K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔDNE và ΔDMF có

DN=DM

\(\widehat{NDE}\) chung

DE=DF

Do đó: ΔDNE=ΔDMF

=>NE=MF

b: Xét ΔDEF có \(\dfrac{DM}{DE}=\dfrac{DN}{DF}\)

nên MN//EF

c: Ta có: DM+ME=DE

DN+NF=DF

mà DE=DF và DM=DN

nên ME=NF

ΔDNE=ΔDMF

=>\(\widehat{DNE}=\widehat{DMF}\)

mà \(\widehat{DNE}+\widehat{FNE}=180^0;\widehat{DMF}+\widehat{EMF}=180^0\)(các cặp góc kề bù)

nên \(\widehat{EMF}=\widehat{FNE}\)

ΔDNE=ΔDMF

=>\(\widehat{DEN}=\widehat{DFM}\)

Xét ΔIME và ΔINF có

\(\widehat{IME}=\widehat{INF}\)

ME=NF

\(\widehat{IEM}=\widehat{IFN}\)

Do đó: ΔIME=ΔINF

3 giờ trước (19:37)

đúng ko

3 tháng 5 2016

D E F

a/ Vì EF2=DE2+DF2 (Pytago)

=> Tam giác DEF vuông tại D

24 tháng 2 2019

tu ke hinh :

a, tam giac DMN can tai A (gt)

=> DM = DN  (dn) 

xet tam giac DMF va tam giac DNE co : goc D chung

ED  = FD (gt)

=>  tam giac DMF = tam giac DNE  (c - g - c)

b,  tam giac DMF = tam giac DNE (Cau a)

=> goc DMG = goc DNG (dn)  (1)  va goc DEN = goc DFM (dn)

goc DEN + NEM = 180 (kb)

goc DFM+ MFN = 180 (kb)

=> goc NEM = goc  NFM       (2)

tam giac DMN can tai D (gt)

=> DM = DN (dn) 

DE = DF (gt)

DE + EM = DM 

DF + FN = DN

=> EM = FN  (3)

(1)(2)(3) => tam giac GME = tam giac GNE (g-c-g)

29 tháng 6 2018

a,ta có;\(\widehat{E}=\widehat{F}\)(do \(DE=DF\)nên\(\Delta DEF\)cân tại D)mà\(\widehat{E}=50^0=>\widehat{F}=50^0\)

b.xét\(\Delta DEF\)cân tại D có(1)

DH là đường trung tuyến ứng với cạnh EF(do H là trung điểm của EF)(2)

từ (1) và(2)=>DH đồng thời là đường cao ứng với cạnh EF=>\(DH\perp EF\)tại H

c.xét\(\Delta DMH\)\(\Delta DNH\)

DM=DN(GT)

HM=HN(GT)

DM:chung

=>\(\Delta DMH=\Delta DNH\left(c-c-c\right)\)

=>\(\widehat{DMH}=\widehat{DNH}\)(hai góc tương ứng)

10 tháng 5 2016

Hình vẽ tớ  có lẽ vẽ hơi chi tiết về phần bằng nhau hay vuông góc nhỉ ???? Nếu không nhìn thấy rõ thì bảo tớ vẽ lại nhé ;)

Toán lớp 7

a) 

Theo đề ra, ta có: ED= 6 (cm) => \(ED^2=6^2=36\)

DF=8(cm) => \(DF^2=8^2=64\)

EF=10(cm) => \(EF^2=10^2=100\)

Ta thấy: 100= 36+64 => \(EF^2=DE^2+DF^2\)

=> Tam giác EDF vuông tại D (theo định lý Py-ta-go đảo)

b) 

*) Xét \(\Delta EDM\) và \(\Delta ENM\), có: 

ED=EN(gt)

\(\widehat{E_1}=\widehat{E_2}\)

Chung EM.

=> \(\Delta EDM=\Delta ENM\left(c.g.c\right)\) ( còn có cách g.c.g nữa ) 

=> \(\widehat{EDM}=\widehat{ENM}\) và DM=MN mà \(\widehat{EDM}=90^o\)

=> \(\widehat{ENM}=90^o\) => MN vuông góc với EF. 

*) Trong tam giác NMF vuông tại N =>  Góc N là góc lớn nhất trong tam giác đó => MF là cạnh lớn nhất => MF>MN.

Mà MN=DM => MF>DM.

c) Lấy điểm giao nhau của EM và DN là P'

Xét tam giác EDP' và tam giác ENP', ta có: 

ED=EN

\(\widehat{E_1}=\widehat{E_2}\)

Chung EP' 

=> \(\Delta EDP'=\Delta ENP'\left(c.g.c\right)\)

=> DP'=P'N => P' là trung điểm của đoạn thẳng DN mà P cũng là trung điểm của đoạn thẳng DN nên P và P' trùng nhau.

Đồng thời P và M cùng nằm trên tia phân giác của góc E.(1)

*) Nối điểm E-> Q ( phải nối vì ta chưa chứng minh được Q thuộc tia phân giác góc E ý mà)

Xét tam giác DMI và tam giác NMF.

\(\widehat{D}=\widehat{N}\left(=90^o\right)\)

DM=MN

\(\widehat{M_1}=\widehat{M_2}\) (góc đối đỉnh)

=> \(\Delta DMI=\Delta NMF\left(g.c.g\right)\)

=> DI=NF và ED=EN => DI+DE=FN+FE =>IE=FE

Xét tam giác EQI và tam giác EQF.

IE=FE

Chung EQ

IQ=QF( do Q là trung điểm của IF)

=> \(\Delta EIQ=\Delta EFQ\left(c.c.c\right)\) => \(\widehat{E_1}=\widehat{E_2}\) => Q thuộc tia phân giác của góc E (2)

Từ (1) và (2) => P,M,Q thẳng hàng......

p/s: Nếu cậu thích thì có thể không làm theo dạng xét tam giác mà áp dụng tính chất tia phân giác của góc hay đại loại là thế mà làm ..... 

10 tháng 5 2016

Sr về cái hình nha ..... cái hình đánh dấu cái không đáng :p

3 tháng 3 2018

D E F N M I

a)   XÉT \(\Delta DEM\)VÀ \(\Delta DEN\)

       ^D CHUNG 

         DM=DN                        \(\Rightarrow\Delta DEM=\Delta DEN\left(C-G-C\right)\)=>  ^DEM=^DEN

         DF=DE

b)   VÌ ^DEF=^DFE MÀ ^DEM=^DEN =>^IEF=^IFE  \(\Rightarrow\Delta IEF\)CÂN

c)    TA CÓ \(\Delta DNM\)CÂN TẠI D NÊN ^DMN=^DNM=\(\frac{180^0-D}{2}\)(1)

      TA  LẠI CÓ \(\Delta DÈF\)CÂN TẠI D NÊN ^DEF=^DFE=\(\frac{180^0-D}{2}\)(2)

     TỪ (1) VÀ (2) => ^DMN=^DFE 

     MÀ 2 GÓC NÀY Ở VỊ TRÍ ĐỒNG VỊ NÊN NM // EF

9 tháng 3 2022

các bạn giúp mik với

 

1: Xét ΔDIN và ΔMFN có

ND=NM

\(\widehat{DNM}=\widehat{MNF}\)

NI=NF

Do đó: ΔDIN=ΔMFN

Suy ra: DI=FM

mà DI<DF

nên FM<DF

2: EF=12cm nên IF=6cm

\(\Leftrightarrow DI=FM=\sqrt{8^2-6^2}=2\sqrt{7}\left(cm\right)\)